Abstract:
A process for the preparation of toner compositions with controlled particle size comprising:(i) preparing a pigment dispersion in water, which dispersion is comprised of a pigment, an ionic surfactant in amounts of from about 0.5 to about 10 percent by weight to water, and an optional charge control agent;(ii) shearing the pigment dispersion with a latex mixture comprised of a counterionic surfactant with a charge polarity of opposite sign to that of said ionic surfactant, a nonionic surfactant, and resin particles, thereby causing a flocculation or heterocoagulation of the formed particles of pigment, resin, and charge control agent;(iii) stirring the resulting sheared viscous mixture of (ii) at from about 300 to about 1,000 revolutions per minute to form electrostatically bound substantially stable toiler size aggregates with a narrow particle size distribution;(iv) reducing the stirring speed in (iii) to from about 100 to about 600 revolutions per minute, and subsequently adding further anionic or nonionic surfactant in the range of from about 0.1 to about 10 percent by weight of water to control, prevent, or minimize further growth or enlargement of the particles in the coalescence step (v);(v) heating and coalescing from about 5.degree. to about 50.degree. C. above about the resin glass transition temperature, Tg, which resin Tg is from between about 45.degree. C. to about 90.degree. C., the statically bound aggregated particles to form said toner composition comprised of resin, pigment and optional charge control agent;(vi) washing the aggregated particles at a temperature of from about 15.degree. C. to about 5.degree. C. below the glass transition temperature of the resin, and subsequently filtering the aggregated particles until substantially all of the surfactant has been removed from the aggregated particles, followed by subsequent driving of the particles at a temperature of from about 15.degree. C. to about 5.degree. C. below the glass transition temperature of the resin; and(vii) subsequently adding to said toner product a first layer of a hydrophilic oxide, and a second layer of a hydrophobic oxide.
Abstract:
A polymerization process comprising: heating a mixture comprised of a free radical initiator, a stable free radical agent, at least one polymerizable monomer compound, and optionally a solvent, to form a polymer with a high monomer to polymer conversion and a narrow polydispersity, wherein said polymer is comprised of a covalently bound free radical initiator fragment at one end and a covalently bound stable free radical compound at the other end of the polymer, and wherein said stable free radical agent has high thermal, acidic, and photochemical stability.
Abstract:
A process for the preparation of polymer compositions which comprises mixing a conductive component with an anionic polymeric latex containing a polymer; adding a cationic surfactant, or flocculant whereby the aggregation of the latex particles and the conductive component particles results; subsequently adding colloidal stabilizer, followed by the addition of a base to obtain a pH of from about 7 to about 12; heating above about the polymer glass transition temperature thereby enabling the severage, or breakage of the formed aggregated particles; further heating above about the polymer glass transition temperature enabling the coalescence of the polymer and conductive component particles; and optionally washing and drying the resulting coalesced product.
Abstract:
A toner composition comprised of pigment, an optional charge enhancing additive, optional wax, and a polyester resin containing a hydrophobic end group, which polyester is free of acid end groups and is of the formula ##STR1## wherein R is an alkyl group, an alkyloxylated bisphenol, or a cyclohexyl; R' is an aryl group, an olefinic group, or an alkyl group; X is a silane, a siloxane, or a halogenated hydrocarbon; and n represents the number of segments.
Abstract:
A free radical polymerization process for the preparation of a thermoplastic resin includes heating a mixture comprised of a free radical initiator, a stable free radical agent, and ethylene at a temperature of from about 40.degree. C. to about 500.degree. C. and at a pressure of from about 500 to about 5,000 bar to form a thermoplastic resin. The thermoplastic resin has a molecular weight distribution of from about 1.0 to about 2.0.
Abstract:
Disclosed is a toner which comprises particles comprising: (a) a core comprising: (1) a first resin; and (2) a first conductive colorant; and (b) a shell comprising: (1) a second resin; and (2) a second conductive colorant.
Abstract:
The present disclosure describes a toner produced using a coalescing temperature lower than the melting point of a wax in the toner, quench cooling or both. The resulting toners can exhibit reduced dielectric loss and improved tribo charging.
Abstract:
A light-magenta radiation-curable gel ink including at least one curable monomer, at least one organic gellant, at least one photoinitiator, and a colorant. The colorant includes a magenta colorant, a hue-adjusting colorant that absorbs light having a wavelength of from about 400 to about 500 nm, and an optional shade-adjusting colorant that absorbs light having a wavelength of from about 600 to about 700 nm.