Abstract:
Control plane devices are selected by an access point for establishment of end-to-end control plane for a user equipment (UE) coupled to (or requesting to couple to) the access point. In one aspect, the selection is based on data extracted during the setup and/or registration messages communicated between the access point and UE during attachment of the UE to the access point and/or an internal derived mapping of the control pane devices to the access point. In one example, a control plane device pool is segregated to and different sets of control plane devices are selected and utilized to handle traffic associated with different services to improve scaling and flexibility.
Abstract:
A mobile device mobility state is included in device reporting to a radio access network for mobility event and load balancing purposes. Respective load conditions and respective coverage areas of a first set of devices of a first network and a second set of devices of a second network are analyzed. In addition, a mobility state of a mobile device, a first signal strength associated with the first set of devices, and a second signal strength associated with the second set of devices are also analyzed. The mobility state is a function of a movement pattern of the mobile device and a speed at which the mobile device is being moved. Network traffic of the mobile device is routed to a set of network devices selected from the first set of devices and the second set of devices, as a result of the analysis.
Abstract:
Control plane devices are selected by an access point for establishment of end-to-end control plane for a user equipment (UE) coupled to (or requesting to couple to) the access point. In one aspect, the selection is based on data extracted during the setup and/or registration messages communicated between the access point and UE during attachment of the UE to the access point and/or an internal derived mapping of the control pane devices to the access point. In one example, a control plane device pool is segregated to and different sets of control plane devices are selected and utilized to handle traffic associated with different services to improve scaling and flexibility.
Abstract:
Concepts and technologies are described herein for traffic steering across radio access technologies and radio frequencies utilizing cell broadcast messages. According to one aspect disclosed herein, a base station can collect load information of the base station. The base station can also generate a cell broadcast message that includes the load information. The base station can also send the cell broadcast message to a target mobile device. The target mobile device can be configured to determine, based at least in part upon the load information, which radio access network of a plurality of radio access networks to connect to.
Abstract:
Concepts and technologies are described herein for traffic steering across cell-types. According to one aspect disclosed herein, a mobile device enables radio access network (“RAN”) selection across multiple cell-types, including, but not limited to, macro cells, metro cells, femto cells, pico cells, and the like, based upon network conditions, local device information, and/or other information such as policies and user profiles. The local device information can include, but is not limited to, mobility state information, performance measurement information, battery utilization information, channel quality information, and user overrides.
Abstract:
A mobile device mobility state is included in device reporting to a radio access network for mobility event and load balancing purposes. Respective load conditions and respective coverage areas of a first set of devices of a first network and a second set of devices of a second network are analyzed. In addition, a mobility state of a mobile device, a first signal strength associated with the first set of devices, and a second signal strength associated with the second set of devices are also analyzed. The mobility state is a function of a movement pattern of the mobile device and a speed at which the mobile device is being moved. Network traffic of the mobile device is routed to a set of network devices selected from the first set of devices and the second set of devices, as a result of the analysis.
Abstract:
A mobile device mobility state is included in device reporting to a radio access network for mobility event and load balancing purposes. Respective load conditions and respective coverage areas of a first set of devices of a first network and a second set of devices of a second network are analyzed. In addition, a mobility state of a mobile device, a first signal strength associated with the first set of devices, and a second signal strength associated with the second set of devices are also analyzed. The mobility state is a function of a movement pattern of the mobile device and a speed at which the mobile device is being moved. Network traffic of the mobile device is routed to a set of network devices selected from the first set of devices and the second set of devices, as a result of the analysis.
Abstract:
Traffic associated with user equipment that are coupled to a first radio access network is steered to a second radio access network based on an adaptable signal strength criterion. The signal strength criterion is related to real-time network load conditions of the first radio access network and can be broadcasted from a serving access point to the user equipment. Moreover, the signal strength criterion facilitates steering, to the second radio network, traffic associated with user equipment that are located closer to a cell edge of the first radio access network before steering traffic associated with user equipment are located further away from the cell edge. In addition, based on the network congestion within the first radio access network, the signal strength criterion is modified to adjust the number of user equipment that are steered to the second radio network.
Abstract:
Concepts and technologies are described herein for traffic steering across radio access technologies and radio frequencies utilizing cell broadcast messages. According to one aspect disclosed herein, a base station can collect load information of the base station. The base station can also generate a cell broadcast message that includes the load information. The base station can also send the cell broadcast message to a target mobile device. The target mobile device can be configured to determine, based at least in part upon the load information, which radio access network of a plurality of radio access networks to connect to.