摘要:
A method of controlling an energy harvesting system that converts excess thermal energy into mechanical energy and includes a Shape Memory Alloy (SMA) member, includes obtaining current operational parameters of the energy harvesting system, such as a maximum temperature, a minimum temperature and a cycle frequency of the SMA member. The current operational parameters are compared to a target operating condition of the energy harvesting system to determine if the current operational parameters are within a pre-defined range of the target operating condition. If the current operational parameters are not within the pre-defined range of the target operating condition, then a heat transfer rate to, a heat transfer rate from or a cycle frequency of the SMA member is adjusted to maintain operation of the energy harvesting system within the pre-defined range of the target operating condition to maximize efficiency of the energy harvesting system.
摘要:
An energy harvesting system comprises a first region having a first temperature and a second region. A conduit is located at least partially within the first region. A heat engine configured for converting thermal energy to mechanical energy includes a shape memory alloy forming at least one generally continuous loop. The shape memory alloy is disposed in heat exchange contact with the first region and the second region. The shape memory alloy is driven to rotate around at least a portion of the conduit by the response of the shape memory alloy to the temperature difference between the first region and the second region. At least one pulley is driven by the rotation of the shape memory alloy, and the at least one pulley is operatively connected to a component to thereby drive the component.
摘要:
A cooling system configured for converting thermal energy to mechanical energy includes a source of thermal energy provided by a temperature difference between a heat source having a first temperature and a coolant having a second temperature that is lower than the first temperature. The cooling system includes a cooling circuit configured for conveying the coolant to and from the heat source. The cooling circuit includes a conduit and a pump in fluid communication with the conduit and configured for delivering the coolant to the heat source. The cooling system also includes a heat engine disposed in thermal relationship with the conduit and configured for converting thermal to mechanical energy. The heat engine includes a first element formed from a first shape memory alloy having a crystallographic phase changeable between austenite and martensite at a first transformation temperature in response to the temperature difference between the heat source and coolant.
摘要:
A process generally includes contacting a surface of at least one workpiece with a reconfigurable pad of a fixture device, wherein the reconfigurable pad comprises a shape memory material configured to conform to the surface of the at least one workpiece, and fixturing the contacted workpiece.
摘要:
A cooling system configured for converting thermal energy to mechanical energy includes a source of thermal energy provided by a temperature difference between a heat source having a first temperature and a coolant having a second temperature that is lower than the first temperature. The cooling system includes a cooling circuit configured for conveying the coolant to and from the heat source. The cooling circuit includes a conduit and a pump in fluid communication with the conduit and configured for delivering the coolant to the heat source. The cooling system also includes a heat engine disposed in thermal relationship with the conduit and configured for converting thermal to mechanical energy. The heat engine includes a first element formed from a first shape memory alloy having a crystallographic phase changeable between austenite and martensite at a first transformation temperature in response to the temperature difference between the heat source and coolant.
摘要:
Door closure assist assemblies that assist in providing a final closing motion generally includes an extender portion comprised of an active material adapted to linearly expand in response to an activation signal and a releasable fastener having one component in movable communication with the extender portion and a second component attached to the other selected one of the door and doorframe. During operation, the door closure assist assembly provides the final closing action.
摘要:
Door closure assist assemblies that assist in providing a final closing motion generally includes an extender portion comprised of an active material adapted to linearly expand in response to an activation signal and a releasable fastener having one component in movable communication with the extender portion and a second component attached to the other selected one of the door and doorframe. During operation, the door closure assist assembly provides the final closing action.
摘要:
A method of controlling and/or predicting the remaining useful life of an active material actuator, such as a shape memory alloy wire, includes obtaining historical actuation data of an inherent system variable, such as electrical resistance, over a secondary variable, such as time, determining a normal operating envelope having upper and lower bounds based on the data, determining a current profile for a given actuation cycle, and comparing the shape of the current profile to the envelope to determine an out-of-bounds event.
摘要:
A method of controlling and/or predicting the remaining useful life of an active material actuator, such as a shape memory alloy wire, includes obtaining historical actuation data of an inherent system variable, such as electrical resistance, over a secondary variable, such as time, determining a normal operating envelope having upper and lower bounds based on the data, determining a current profile for a given actuation cycle, and comparing the shape of the current profile to the envelope to determine an out-of-bounds event.
摘要:
Power is selectively transferred from a primary actuator to one of a plurality of output shafts with a transmission including a plurality of output members coupled to an input member, the input member being coupled to the primary actuator. A first active material actuator includes a mechanical coupling feature coupling one of the plurality of output shafts to one of the plurality of output members when the active material actuator is activated.