Abstract:
A latchable rocker arm is actuated with a solenoid device having a stator and an armature where the armature is connected to an output link which is connected to a first connecting link and a second connecting link which are disposed to form a "knee" linkage where in the fully actuated state the first connecting link and the second connecting link are in substantial axial alignment. A pivoted output link is connected to the first connecting link for contacting and actuating the latchable rocker arm.
Abstract:
A rotary positive displacement blower (10) of the Roots-type having inlet and outlet vents recess (60,62) for reducing fluid pressure build up in spaces between meshing, helical lobes (34a, 36a) on rotating rotors of the blower.
Abstract:
Venturi devices are disclosed herein that include a body defining a Venturi gap between an outlet end of a converging motive section and an inlet end of a diverging discharge section, having a suction port in fluid communication with the Venturi gap, a gate valve linearly translatable to open and close the Venturi gap, and an actuator connected to the gate valve to operatively move the gate valve between an open position and a closed position. The gate valve, in a longitudinal cross-section, is generally U-shaped, thereby having continuous, opposing sides that one each close the motive outlet and the discharge inlet and defining a void between the opposing sides that is in fluid communication with the suction port. The converging motive section defines a circular-shaped motive inlet and defines an elliptical- or polygonal-shaped motive outlet, and the diverging discharge section defines an elliptical- or polygonal-shaped discharge inlet.
Abstract:
Venturi devices for producing vacuum are disclosed that include a housing defining a motive port, a suction port, a discharge port, a first flow passage between the motive port and the discharge port, and a second flow passage into and through the suction port and into fluid communication with the first flow passage, a first check valve incorporated into the housing and positioned to control fluid flow through the suction port, and a sound attenuating wrap about the outer surface of the housing. The Venturi devices may also include a sound attenuating member disposed in the first flow passage downstream of the intersection of the second flow passage and the first flow passage, in the portion of the second flow passage leading into the suction port, in the first check valve, or combinations thereof.
Abstract:
A Venturi device for producing vacuum from fluids in an engine system has a body defining a Venturi gap separating apart an outlet end of a converging motive section and an inlet end of a diverging discharge section by a lineal distance, and a suction port in fluid communication with the Venturi gap. The converging motive section and the diverging discharge section both gradually, continuously taper toward the Venturi gap, the converging motive section defines a circular-shaped motive inlet and an elliptical- or polygonal-shaped motive outlet, the diverging discharge section defines an elliptical- or polygonal-shaped discharge inlet, and an inner passageway of the converging motive section transitions as a hyperbolic function from the motive inlet to the elliptical- or polygonal-shaped motive outlet.
Abstract:
Methods for post-mold processing a Venturi device for generating vacuum are disclosed that improve the evacuation time thereof. The methods include providing a molded Venturi device having a body defining a Venturi gap between an outlet end of a converging motive passageway and an inlet end of a diverging discharge passageway, where the outlet end defines a motive exit having flash extending radially inward and the inlet end defines a discharge inlet having flash extending radially inward. Then, the method includes positioning the molded Venturi device with an inlet end of the converging motive passageway facing a blasting nozzle or with an outlet end of a diverging discharge passageway facing a blasting nozzle, and propelling blasting media into the motive inlet or the discharge exit of the Venturi device to remove the flash in the motive exit and in the discharge inlet, or vice versa.
Abstract:
A device for producing vacuum using the Venturi effect, systems utilizing the device, and methods of making the device are disclosed. The device has a housing defining a Venturi gap, a motive passageway converging toward the Venturi gap and in fluid communication therewith, a discharge passageway diverging away from the Venturi gap and in fluid communication therewith, and a suction passageway in fluid communication with the Venturi gap. The suction passageway has an interior surface with a surface topography that renders the interior surface hydrophobic and has an oleophobic coating applied to the interior surface while maintaining the surface topography.
Abstract:
An evacuator is disclosed, and includes a body defining a central axis, a converging motive section, a diverging discharge section, at least one suction port, and at least one Venturi gap. The Venturi gap is located between an outlet end of the converging motive section and an inlet end of the diverging discharge section. The evacuator also includes a fin positioned within the motive section of the body. The fin extends in the direction of the central axis.
Abstract:
Check valves, Venturi devices and engines that include the check valves are disclosed. The check valves define an internal cavity having a first port and a second port, a first seat and a second seat, and a translatable seal disk. The first seat is proximate the first port and has a first annular seal bead, and a second annular seal bead radially inward from the first annular seal bead. The seal disk has a first sealing portion seatable against the first annular seal bead and a second sealing portion seatable against the second annular seal bead (both of a first thickness), an intermediate portion between the first and second sealing portions of a second thickness, and a lip portion defining the outer periphery of the seal disk of a third thickness. The second thickness is greater than the first thickness, and the third thickness is less than the first thickness.
Abstract:
Venturi devices and systems incorporating the Venturi devices are disclosed. The Venturi devices have a body defining a passageway that has a motive section and a discharge section spaced a distance apart from one another to define a Venturi gap. Both the motive section and the discharge section converge toward the Venturi gap. Also, the body defines a first suction port and a second suction port generally opposite one another that are each in fluid communication with the Venturi gap. The Venturi gap is generally wider proximate both the first suction port and the second suction port than at a generally central point therebetween. In a system, the Venturi device has its motive section fluidly connected to a source of motive pressure and one or both of the first and second suction ports in fluid communication with a device requiring vacuum.