Abstract:
Noise attenuation units are disclosed that are connectable in a system as part of a fluid flow path. Such units include a housing defining an internal cavity and having a first port and a second port each connectable to a fluid flow path and in fluid communication with one another through the internal cavity, and a noise attenuating member seated in the internal cavity of the housing within the flow of the fluid communication between the first port and the second port. The noise attenuating member enables the fluid communication between the first port and the second port to flow through the noise attenuating member.
Abstract:
Check valves are disclosed, including check valve included in an aspirator, that includes a housing defining an internal cavity having a first port and a second port both in fluid communication therewith, and a sealing member within the cavity. The sealing member is translatable between a closed position against a first seat within the internal cavity of the housing and an open position against a second seat within the internal cavity of the housing. The sealing member has a sealing material positioned for sealing engagement with the first seat when the sealing member is in the closed position and a reinforcing member positioned for engagement with the second seat when the sealing member is in the open position.
Abstract:
Noise attenuation units are disclosed that are connectable in a system as part of a fluid flow path. Such units include a housing defining an internal cavity and having a first port and a second port each connectable to a fluid flow path and in fluid communication with one another through the internal cavity, and a noise attenuating member seated in the internal cavity of the housing within the flow of the fluid communication between the first port and the second port. The noise attenuating member enables the fluid communication between the first port and the second port to flow through the noise attenuating member.
Abstract:
Check valve units having one or more sound attenuating members are disclosed. A check valve unit includes a housing defining an inlet port, an outlet port, and a chamber in fluid communication therewith thereby defining a flow path from the inlet port through the chamber to the outlet port. The chamber includes first and second valve seats and has a sealing member disposed therein that is moveable from a position seated on the first valve seat to a position seated on the second valve seat. A sound attenuating member is disposed in the flow path downstream of the chamber, within the chamber, or both. In another embodiment, the check valve unit includes a Venturi portion in fluid communication with the chamber. The Venturi portion has a fluid junction with the flow path downstream of the chamber or forms the discharge section of the Venturi portion thereby defining the outlet port.
Abstract:
An aspirator for creating vacuum is disclosed that includes a housing defining a fluid passageway with a first tapering portion and a second tapering portion. Each tapering portion has a larger internal opening and a smaller internal opening, the smaller openings facing one another. The aspirator includes a gate positioned between and in fluid communication with the first and second tapering portions, the gate having a first Venturi tube with a Venturi opening creating vacuum when fluid flows in a direction and a second Venturi tube with a Venturi opening that creates vacuum when fluid flows in the opposite direction. The Venturi openings are in fluid communication with a suction port, and the first and second Venturi tubes may provide different mass flow rates through the aspirator. An engine system having an aspirator with a gate having a first bore and a second bore and an actuator is also disclosed.
Abstract:
Check valve units having one or more sound attenuating members are disclosed. A check valve unit includes a housing defining an inlet port, an outlet port, and a chamber in fluid communication therewith thereby defining a flow path from the inlet port through the chamber to the outlet port. The chamber includes first and second valve seats and has a sealing member disposed therein that is moveable from a position seated on the first valve seat to a position seated on the second valve seat. A sound attenuating member is disposed in the flow path downstream of the chamber, within the chamber, or both. In another embodiment, the check valve unit includes a Venturi portion in fluid communication with the chamber. The Venturi portion has a fluid junction with the flow path downstream of the chamber or forms the discharge section of the Venturi portion thereby defining the outlet port.
Abstract:
An evacuator for supplying vacuum to a device in a boosted engine air system is disclosed. The evacuator defines a body comprising a converging motive section, a diverging discharge section, at least one suction port, and a Venturi gap located between an outlet end of the converging motive section and an inlet end of the diverging discharge section. A lineal distance is measured between the outlet end and the inlet end. The lineal distance is decreased in length if higher suction vacuum at a specific set of operating conditions is required and the lineal distances is increased in length if higher suction flow rate at the specific set of operating conditions is required.