Abstract:
The present disclosure provides a display panel, a display device and manufacturing method of the display panel. The display panel includes a display area and a peripheral area located at a periphery of the display area, a light transmittance region is provided in the peripheral region; at least one first sub-pixels is provided at positions corresponding to the light transmittance regions, wherein at least one of the first sub-pixels is provided with a first thin film transistor, the first thin film transistor is connected with the first gate line, the first data line, and the first pixel electrode, wherein the first gate line is floating; a first pixel electrode is disposed in at least one of the first sub-pixels; and at least one first sensing electrode has an orthogonal projection on a base substrate partially overlapped with an orthogonal projection of the at least one first sub-pixel.
Abstract:
A method for manufacturing an array substrate includes: forming a strip-shaped barrier wall(s) on a base substrate, wherein the width of each barrier wall is less than or equal to a distance between a first metal trace to be formed and a second metal trace to be formed; and forming a first metal trace at one side of each barrier wall located in a direction perpendicular to an extending direction of the barrier wall, and forming a second metal trace at an opposite side of the barrier wall located in the direction perpendicular to the extending direction of the barrier wall.
Abstract:
The present disclosure provides a display panel, a manufacturing method thereof and a display device. The display panel includes an opposite substrate and a display substrate opposite each other, a sealant is disposed between the opposite substrate and the display substrate, and the display substrate may be divided into a display area and a peripheral area around the display area. The display substrate includes a first base substrate; a first resin pattern on the first base substrate in the display area; and a protection layer in the display area and the peripheral area and between the first resin pattern and the first base substrate. The sealant is in the peripheral area and in contact with a portion of the protection layer in the peripheral area.
Abstract:
A double sided display includes two liquid crystal display panels. When the pixel electrode and the common electrode are in an on state, they form an electric field which causes the liquid crystal molecules to deflect. Due to the effect of a polymer network, the liquid crystal polymer is in a scattering state, which will destroy the condition of total reflection between the two substrates for light from the backlight source. As a result, at least a part of light from the backlight source is emitted from a side of the first substrate after being scattered by the liquid crystal polymer. When the pixel electrode and the common electrode are in the off state, the long axis direction of liquid crystal molecules is consistent with the extension direction of the polymer long chains in the liquid crystal polymer, and the liquid crystal polymer is in a transparent state.
Abstract:
A display panel and a display device are provided. The display panel includes an array substrate, a color filter substrate arranged opposite to the array substrate, and an electrically conductive first connector. A common electrode is arranged on the array substrate, and a black matrix layer is arranged on a side of the color filter substrate facing the array substrate, and the first connector electrically connects at least a part of the black matrix layer to the common electrode.
Abstract:
A display device and a method for manufacturing the display device are disclosed. An edge region of the display panel of the display device includes a first region in which an exposed connection line pattern is provided and a second region in which no connection line pattern is provided, and an electrostatic layer is attached to the edge region; wherein the electrostatic shielding layer comprises an insulating material region and a conductive material region, the insulating material region contacting the first region and the conductive material region contacting the second region.
Abstract:
A touch display panel, a fabricating method thereof and a driving method thereof are disclosed. The panel comprises a first touch electrode, a second touch electrode, a first touch electrode line and a second touch electrode line. The first touch electrode line and the second touch electrode line are arranged to intersect with each other to determine a touch location based on a change of a capacitance between the first touch electrode and the second touch electrode. The first touch electrode is arranged on an array substrate of the touch display panel. The second touch electrode and the second touch electrode line connected thereto are arranged on an opposing substrate of the touch display panel, and the second touch electrode overlaps with a projection of the first touch electrode in a direction perpendicular to the touch display panel. The first touch electrode line is arranged on the opposing substrate and connected to the second touch electrode. Alternatively the first touch electrode line is arranged on the array substrate and connected to the first touch electrode. In this way, an aperture ratio can be increased.
Abstract:
A regulating method and a regulating apparatus for a driving voltage of a display module, wherein the method comprises: applying, to the display module, a gamma voltage pair corresponding to a grayscale to be tested, selecting a test image and maintaining the test image for a predetermined time duration (11); switching to a predetermined grayscale image that matches the grayscale to be tested, regulating a common voltage of the display module, and recording a direction and a magnitude of regulation of the common voltage (12); and restoring the common voltage to a magnitude before the regulation, and regulating the first gamma voltage and the second gamma voltage according to the recorded direction and magnitude of regulation of the common voltage (13). Regulation accuracy of the driving voltage can be improved, workload for debugging can be reduced and work efficiency can be improved.
Abstract:
According to an embodiment of the present invention, a display panel is provided, which comprises a first substrate (1) and a second substrate (2), wherein the display panel further comprises two first partitioners (6) provided between the first substrate (1) and the second substrate (2) for holding sealant (3). According to another embodiment of the present invention, a display device is also provided, which comprises the above display panel.