Abstract:
A holographic display system and a holographic display method are disclosed. By utilizing the shift of at least one of the light source module and the spatial light modulator, a holographic image can be provided to a plurality of stationary or moving observers over a wide range. The holographic display system includes a light source module for generating a coherent beam; a spatial light modulator for generating a holographic image using the coherent beam; a position detecting device for detecting an eye position of at least one observer; and an actuating device capable of shifting at least one of the light source module and the spatial light modulator based on the eye position of the at least one observer, thereby projecting the holographic image to the eye position of the at least one observer.
Abstract:
A backlight module and a display module are disclosed. The backlight module includes: a back plate and an optical component, wherein at least one positioning structure is disposed on the back plate, the optical component is provided with an opening which is matched with the positioning structure, and a surface of the positioning structure facing an inner wall of the opening is a curved surface. The backlight module can reduce or avoid the deformation of the positioning structure when being subjected to an external force.
Abstract:
The disclosure provides a pixel circuit including a reset module, a data write module, a storage module, a compensation and hold module, a drive module, and a light emitting device. The reset module is connected to the storage module and the light emitting device. The data write module is connected to the drive module. The compensation and hold module is connected to the drive module and the storage module. The storage module is connected to the drive module. The drive module is connected to the light emitting device.
Abstract:
Exemplary embodiments of the present disclosure provide a demultiplexer circuit, a signal line circuit and a corresponding output circuit, and a display. The demultiplexer circuit includes at least one first input terminal configured to receive a first signal, at least one second input terminal configured to receive a second signal, at least one first output terminal configured to output the first signal and the second signal, and at least one second output terminal configured to output the first signal and the second signal. The demultiplexer circuit according to exemplary embodiments of the present disclosure can reduce the signal input lines and the input ports, further facilitate to reduce the layout space of wiring.
Abstract:
A display apparatus comprises a T/CON functional module for providing a timing control, wherein the T/CON functional module and at least one other functional module in the display apparatus are integrated into one printed circuit board, so that the integration of printed circuit boards is improved, the number of peripheral circuit boards and lead wires of the display apparatus is decreased, and the manufacturing cost of the display apparatus is reduced.
Abstract:
An organic light emitting diode (OLED) display device and a preparation method thereof, and a display apparatus are disclosed. The OLED display device includes a base substrate (21), an anode (23), a cathode (26) and an organic functional layer (25), the anode (23), the cathode (26) and the organic functional layer (25) formed on the base substrate (21), and the organic functional layer (25) located between the cathode (26) and the anode (23), the anode (23) and/or the cathode (26) being a topological insulator with a two-dimensional nanostructure, and the topological insulator with the two-dimensional nanostructure being adhered on the base substrate (21) by an adhesive layer. The OLED display device overcomes the problem of non-uniform display lightness which is caused by the high transmission resistance and high IR drop of metal electrodes of OLED display devices.
Abstract:
Provided are an array substrate and driving method thereof, and a display apparatus. The array substrate comprises multiple storage electrode lines (1) each of which comprises at least two storage electrode signal input terminals (11). The array substrate can improve the driving capability of the storage electrode signals on the storage electrode lines (1).
Abstract:
The present disclosure relates to a display substrate, a display device and a method for manufacturing the display substrate. The display substrate comprises a substrate, and a plurality of gate lines, a plurality of data lines and a plurality of common electrode lines which are formed above the substrate. The plurality of gate lines and the plurality of data lines are crossed to form a plurality of pixel units. Each of the plurality of pixel units comprises a thin film transistor and a pixel electrode electrically connected to the thin film transistor. The display substrate further comprises connection electrodes located above the substrate. Each of the connection electrodes connects two adjacent common electrode lines.
Abstract:
An electrostatic protection circuit and a manufacturing method thereof, an array substrate, and a display device are provided. The electrostatic protection circuit includes: at least one first transistor and at least one second transistor. A gate electrode and a first electrode of the first transistor are connected to a first signal line, and a second electrode of the first transistor is connected to a second signal line. A gate electrode and a first electrode of the second transistor are connected to the second signal line, and a second electrode of the second transistor is connected to the first signal line.
Abstract:
A display substrate includes a base substrate including a display area and a peripheral area on at least one side of the display area; a pixel array, located in the display area and including multiple pixel units; and, a scan driving module, located in a driving circuit area of the peripheral area, and including multiple shift register units, multiple signal lines being arranged in one shift register units, and extending along a first direction; wherein a ratio of a sum W1 of widths of the multiple signal lines in a second direction to a width W2 of the shift register unit in the second direction is W1/W2, and a length of at least one pixel unit along the first direction is a pixel pitch value; the first direction intersects the second direction; a product of W1/W2 and the pixel pitch value is greater than 18 um and less than 40 um.