Abstract:
Device and method for needle penetrating and filling a chamber with a predetermined substance, and hermetically resealing a resulting needle hole in the device by applying radiation thereto. The needle penetrable and resealable portion defines a predetermined wall thickness in an axial direction thereof, and may include a thermoplastic that substantially prevents the formation of particles released into the chamber from the needle penetrable and resealable portion during penetration by and withdrawal of the needle. Such thermoplastic may include a predetermined amount of pigment that allows the thermoplastic to substantially absorb laser radiation at a predetermined wavelength, substantially prevent the passage of radiation through the predetermined wall thickness thereof, and hermetically seal a needle aperture formed in the needle penetration region thereof in a predetermined time period.
Abstract:
A dispenser has a body with a variable-volume storage chamber for storing substance, and a dispensing portion defining a dosage chamber in fluid communication with the storage chamber. A first valve includes a valve seat and a flexible valve cover seated thereon defining a normally-closed fluid-tight seam therebetween. The valve cover relative to moves from the valve seat to allow substance through the seam and out of the dispenser. A second valve allows substance from the storage chamber into the dosage chamber and substantially prevents flow from the dosage chamber into the storage chamber. An actuator is manually movable between (i) a first non-actuated position, and (ii) a second actuated position extending into the dosage chamber for compressing a dose of substance therein, dispensing substance through the first valve. The elasticity of the actuator causes it to return to the first non-actuated position upon manually releasing the actuator.
Abstract:
A connector for transferring a fluid includes a first connector and a second connector. Each connector includes a first outer portion including a first obstructive portion and defining a first fluid passageway for receiving a fluid therein. Each connector further includes a first central nozzle coupled to the first outer portion. The central nozzle includes a first engagement member. The first central nozzle is movable between a first position and a second position with rotation of the first outer portion. In the first position, the first obstructive portion and the first engagement portion substantially overlap to impede fluid flow through the first fluid passageway. In the second position, at least one of the first engagement member and the first obstructive member is displaced to allow fluid flow through the first fluid passageway.
Abstract:
Device and method for lyophilizing a substance within the device and storing therein the lyophilized substance. The device defines a chamber for receiving therein the substance to be lyophilized, a penetrable and resealable portion of the device is penetrable or pierceable by a needle for filling the device with the substance, and a resulting hole therein is resealable by transmitting radiation from a radiation source thereon. A filter is connectable in fluid communication between an interior and exterior of the chamber for permitting fluid to flow therethrough in a direction from the interior to the exterior of the chamber, and for substantially preventing contaminants from flowing therethrough in a direction from the exterior to the interior of the chamber.
Abstract:
An aseptic fluid connector having a first connector including a first fluid passageway for receiving a fluid therein; a first port in fluid communication with the first fluid passageway for passage of the fluid therethrough; and a first deflecting member. The first deflecting member includes a first engaging portion radially spaced relative to the first port, and a first valve movable between a closed position and an open position with movement of the first engaging portion between a non-deflected position and a deflected position, respectively. In the non-deflected position, the first valve is located in the closed position forming a fluid-tight seal between the first valve and first port and preventing the passage of fluid therethrough, and in the deflected position, the first valve is located in the open position allowing the aseptic passage of fluid through the first port.