Abstract:
Methods for the use of peracid compositions having decreased hydrogen peroxide concentration for various water treatments, including oil- and gas-field operations, and/or other aseptic treatments are disclosed. In numerous aspects, peracetic acid is the preferred peracid and is treated with a peroxide-reducing agent to substantially reduce the hydrogen peroxide content. Methods for using the treated peracid compositions for treatment of drilling fluids, frac fluids, flow back waters and disposal waters are also disclosed for improving water condition, reducing oxidizing damage associated with hydrogen peroxide and/or reducing bacteria infestation.
Abstract:
The present invention relates to novel sulfoperoxycarboxylic acid compounds, and methods for making and using them. The sulfoperoxycarboxylic compounds of the invention are storage stable, water soluble and have low to no odor. Further, the compounds of the present invention can be formed from non-petroleum based renewable materials. The compounds of the present invention can be used as antimicrobials, and bleaching agents. The compounds of the present invention are also suitable for use as coupling agents.
Abstract:
The present invention relates to novel glycerin ether ethoxylate solfactant compounds, compositions employing the same, and methods of using these compounds. Beneficially the compounds have efficacy as both solvents and surfactants with low foam and low viscosity. The compounds of the present invention can be used as antimicrobials and/or sanitizing agents in various formulations. The compounds of the present invention are also suitable for use as solvents and/or hydrotropes.
Abstract:
Peracid stable fluorescent active compounds in highly acidic, equilibrium peroxycarboxylic acid sanitizing compositions are disclosed as having improved fluorescent stability allowing for monitoring of peroxycarboxylic acid concentration by conductivity and/or optical sensors. Beneficially, the compositions are also low odor and low/no VOC dual functioning acid wash and sanitizing compositions.
Abstract:
Self-indicating chemistries are provided for visual detection by a user of efficacious levels of peroxycarboxylic acid concentrations in a solution produced in situ. The self-indicating chemistries include a combination of dyes providing a visual color indication, such as a tri-color indicator system, such as a yellow, green, and red color system indicating in situ threshold levels of peroxycarboxylic acid concentrations in a solution employing the self-indicating chemistry. Systems, kits and compositions for a quantitative assessment of an in situ perhydrolysis reaction to generate peroxycarboxylic acids are provided. Methods of use are further provided.
Abstract:
Methods for the use of peracid compositions having decreased hydrogen peroxide concentration for various water treatments, including oil- and gas-field operations, and/or other aseptic treatments are disclosed. In numerous aspects, peracetic acid is the preferred peracid and is treated with a peroxide-reducing agent to substantially reduce the hydrogen peroxide content. Methods for using the treated peracid compositions for treatment of drilling fluids, frac fluids, flow back waters and disposal waters are also disclosed for improving water condition, reducing oxidizing damage associated with hydrogen peroxide and/or reducing bacteria infestation.
Abstract:
The present invention relates to compositions, methods of making and their use as cleaning composition, as antimicrobials and/or bleaching agent having improved storage stability and effective at lower concentration, wherein the liquid, storage stable composition comprises a mixture of: a) a sulfoperoxycarboxylic acid, b) a C1 to C4 percarboxylic acid, c) a C5 to C10 percarboxylic acid, d) a peroxide agent, e) a hydrotrope, f) an acidulant, g) a liquid; wherein the composition comprises free sulfocarboxylic acid, free C1 to C4 carboxylic acid and free C5 to C10 carboxylic acid.
Abstract:
Peracid stable fluorescent active compounds in highly acidic, equilibrium peroxycarboxylic acid sanitizing compositions are disclosed as having improved fluorescent stability allowing for monitoring of peroxycarboxylic acid concentration by conductivity and/or optical sensors. Beneficially, the compositions are also low odor and low/no VOC dual functioning acid wash and sanitizing compositions.
Abstract:
Peracid stable fluorescent active compounds in highly acidic, equilibrium peroxycarboxylic acid sanitizing compositions are disclosed as having improved fluorescent stability allowing for monitoring of peroxycarboxylic acid concentration by conductivity and/or optical sensors. Beneficially, the compositions are also low odor and low/no VOC dual functioning acid wash and sanitizing compositions.
Abstract:
The present invention relates to specially selected catalase enzymes and their use in reducing hydrogen peroxide in applications, and particularly in aseptic packaging applications.