Abstract:
The invention relates to a device for inductive heating of an electrically-conducting component section symmetrical relative to an axis, in particular, a sleeve section of a tool clamping chuck for clamping a tool by means of a press fit, wherein the device has several pole pieces made from a magnetically-conducting material arranged in the circumferential direction around the symmetry axis of the component section introduced as required into the device and an induction device for supplying the pole pieces with magnetic flux such that the magnetic flux in pole pieces which are adjacent in the circumferential direction is opposed. The pole pieces are all mounted on the device such as to be movable about an axis (adjustment rotation axis) running essentially parallel to the axis of symmetry of the component section, such that each of the pole pieces can be adjusted in the direction of the surface region of the individual workpiece by means of a rotation about the provided adjustment rotation axis.
Abstract:
The invention relates to a high-precision clamping device for tools in machine tools of the conventional type according to ISO 15488 and to a collet chuck, a base and a tensioning nut. The invention also relates to a chuck key for tightening the locknut without radial stress. The clamping device according to the invention is characterized by a substantially improved runout accuracy, torsional rigidity of the collet chuck and rigidity of the tool clamped therein.
Abstract:
The invention relates to a tool holder (1) for clamping tools by shrink fit. Said tool holder, due to its specific shaping in the area of the shrink-fit head (6) and the shrink-fit base (5) of the tool holder, is less prone to oscillate than known tool holders, therefore allowing inter alia higher speeds so that the cutting capacity, determined by the speed of the tool, the tool feed and the cutting depth of the tool, can be increased and the machine running times required to produce a workpiece can be reduced. The tool holder (1) of the present invention allows to produce and machine workpieces in a substantially more efficient and economical manner.
Abstract:
The aim of the invention is to improve the guiding of a lubricant through a tool holder in a small quantity lubrication system. According to the invention, a tool holder (1) comprises, in the maintaining body thereof (3), an axially displaceable stop sleeve (45) which is mounted in a through opening (31) which is connected to the receiving opening (13) for a tool shaft (15) and a stop surface (47) which is adjacent to the front end (23) of the tool shaft (15). Said stop sleeve (45) is screwed into an inner thread (43) of the through opening (31) and is coupled in a rotationally fixed manner, but in an axially displaceable manner, to a control tube (49) which engages in said stop sleeve (45) in an axial manner. Said control tube (49) is mounted in an axially fixed manner to the side thereof, but in a rotatable manner to the fluid coupling (27). A lubricant can be guided over the blades of the tool (9) by means of the fluid coupling (27), the control tube (49), the stop sleeve (45) and channels (17). Said tool holder (1) enables the fluid to be guided in an essentially calm manner to the tool, even in small amounts, and simplifies the longitudinal pre-adjustment of the tool unit/tool holder unit.
Abstract:
A tool holder for a tool which can be rotated about an axis of rotation, in particular a drilling, milling or reaming tool, comprises a clamping shank which, in an end shank region (7), has an accommodating opening (9) which is central in relation to the axis of rotation and is intended for accommodating a retaining shank of the tool. Clamping surfaces for securing the retaining shank of the tool with a press fit are arranged on the circumferential casing of the accommodating opening. According to the invention, the end shank region (7) of the clamping shank has a plurality of at least more or less axially extending tension spokes (13) distributed in the circumferential direction, it being possible for said tension spokes to be subjected to an essentially radially outwardly directed tensile force in order for the clamping surfaces to be spread apart radially from one another. Acting on the tension spokes (13) are bridge elements (19) which bridge the circumferential spacing between the latter and of which the chord length measured between the points of attachment of the bridge elements to the tension spokes (13) can be increased when the tension spokes (13) are subjected to the action of tensile force.
Abstract:
A shrinking arrangement for a tool holder (12) which retains a rotary tool (10) with a press fit in a central accommodating opening (20) comprises an accommodating unit (24) for accommodating the tool holder and a temperature-controlling arrangement (46, 64) at least for the thermal expansion, in particular also for subsequent cooling, of the tool holder in the region of the accommodating opening. According to the invention, the accommodating unit is arranged on a carriage (32) which is guided such that it can be displaced in the longitudinal direction of the rails of a rail system (30), which runs parallel to the axis (16) of the tool holder accommodated in the accommodating unit and is fastened on a supporting base (28), and it being possible for said carriage to be moved along its displacement path into at least one region of action of the temperature-controlling arrangement. It is preferably the case, furthermore, that a positioning/mounting unit (36) which retains the tool (10) in a radial position relative to the tool holder (12) is arranged on a further carriage (34), which is guided such that it can be displaced in the longitudinal direction of the rails of the rail system (30) independently of the first-mentioned carriage (32).
Abstract:
To set the length of a rotary tool (1a), to be thermally shrunk in place in a tool holder (7a), by means of an inductive heating device (15a), a setting device is provided with a positioning holder (61) for the rotary tool (1a), this positioning holder (61) being freely displaceable, but lockable, along a guide (35a) and its tool push-in movement into the thermally expanded tool holder (7a) being limited by a stop (71). The rotary tool (1a) bears with its tip (31a) against a stop (43a) of the positioning holder (61). By means of a length-measuring device (39a), the stop (71) limiting the push-in movement can be limited to a position in which the tip (31a) of the rotary tool (1a) is at a predetermined distance from a reference surface (33a) of a holder receptacle (17a), holding the tool holder (7a) during the shrink-fitting operation, or from a corresponding reference surface of the tool holder (7a).
Abstract:
The induction coil (13) of an arrangement which heats a tool-holder (1) inductively for the purpose of changing a tool shank (11) retained with a press-fit therein has a winding (19), in the case of which the number of coil turns per unit of length in the direction of the coil axis and/or the number of coil turns per unit of surface area is smaller in an intermediate region located, in the direction of the coil axis, between two main winding regions (21, 23) than in the two main winding regions (21, 23) and/or the internal winding diameter is smaller in the two main winding regions (21, 23) than in the intermediate region and/or, at least in an axial sub-region of the induction coil (13), increases from the two main winding regions (21, 23) in the direction of the intermediate region. Such a winding achieves uniform heating of the tool-holder (1) in the axial direction of the tool shank (11) and, accordingly, it is possible even for tool shanks (11) retained with very small tolerances in the press-fit of the tool-holder (1) to be released from the shrink-fit without jamming.
Abstract:
A clamping device for clamping a machine element (3), in particular a tool holder for a drilling, milling or grinding tool or the like, which rotates about an axis of rotation (9), comprises a base body unit (11) which has a receiving opening (21) which is central with respect to the axis of rotation (9) and into which a coupling shank (5) of the machine element (3) can be fitted axially from one end, a chuck (23) which is arranged in the receiving opening (21), and a chuck-actuating unit (25), which is guided on the base body unit (11) in such a manner that it can be displaced in the axial direction relative to the latter, for actuating the chuck (23). In order to achieve a high reproducibility of the measurements of unbalance when using this clamping device (1) in a balancing machine, the chuck-actuating unit (25) is axially guided by means of a rolling body arrangement (35) on the base body unit (11), the rolling bodies (39) of which arrangement roll along rolling surfaces (41, 43) of the base body unit (11) and of the chuck-actuating unit (25). The rolling body arrangement (35) is preferably formed by a ball cage unit, the balls of which (39) are fitted with prestress between the base body unit (11) and the chuck-actuating unit (25).
Abstract:
A pressing or pelletizing device for compacting vegetable materials, in particular grass blades, is disclosed for use with a harvester. In order to reduce the pressing forces required for the pelletizing process, the pressing channels are heated up to a temperature above 100 degrees C. It has been demonstrated that by heating the pressing channels, local overheating of the device, which could otherwise lead to malfunctions, can be avoided. The pelletizing device has two co-axial hollow cylinders in which the pressing channels are delimited by radial lands which alternatively engage the pressing channels of the other hollow cylinder. The hollow cylinders are heated by means of a liquid circuit guided through the lands and linked to a heat exchanger that utilizes lost heat from the internal combustion engine of the harvester.