Abstract:
A method for utilizing multi-parameter fiber optic sensing cables in conjunction with a reservoir compaction and subsidence model of a multi-well hydrocarbon field to continuously update the reservoir model to optimize production efficiency while ensuring well integrity on a field level.
Abstract:
Systems and methods for distributed acoustic sensing based on coherent Rayleigh scattering are disclosed herein. A system comprises a pulse generator, an optical fiber coupled to the pulse generator, an interferometer coupled to the optical fiber, a photodetector assembly coupled to the interferometer, and an information handling system, which activates two optical gain elements so as to vary the optical path length of the interferometer. A method comprises sending an optical pulse down an optical fiber, splitting backscattered light from the optical pulse into a first backscattered pulse and a second backscattered pulse, activating a first optical gain element and a second optical gain element, sending the first backscattered pulse into a first arm of an interferometer, sending the second backscattered pulse into a second arm of an interferometer, combining the first and second backscattered pulses to form an interferometric signal, and receiving the interferometric signal at a photodetector assembly.
Abstract:
A single-use pressure-controlled actuator for downhole well tools or mechanisms is provided. The actuator is configured for control of activation/deactivation by agency of wellbore fluid pressure (e.g., pressure levels of drilling fluid or drilling mud in the wellbore). The actuator is further configured for hydraulic actuation by agency of the wellbore fluid. The actuator comprises a plunger displaceably mounted on a sealed cylinder body, with a non-reclosable frangible device closing off wellbore fluid access to an interior of the cylinder body. The frangible device is configured for automatic in response to exposure of wellbore fluid pressures exceeding a predetermined activation threshold. Failure of the frangible device causes exposure of the plunger to the wellbore fluid, resulting in actuated movement of the plunger by hydraulic action of the wellbore fluid.
Abstract:
A downhole optical sensing system can include an optical fiber positioned in the well, the optical fiber including multiple cores, and one of the cores having a Brillouin scattering coefficient which is different from another one of the cores. A method of sensing strain and temperature as distributed along an optical fiber can include measuring Brillouin scattering in a core of the optical fiber disposed in a well, and measuring Brillouin scattering in another core of the optical fiber disposed in the well, the optical fiber cores being exposed to a same strain and temperature distribution in the well.
Abstract:
Generating broadband light downhole for wellbore application. A laser source is configured to reside outside a wellbore and produce a seed light pulse at a first wavelength spectrum. A converter is configured to be received inside the wellbore, remote from the laser source. The converter receives the seed light pulse at the first wavelength spectrum through one or more fiber optic cables, and generates light at a second wavelength spectrum that has a broader range than the first wavelength spectrum.
Abstract:
Monitoring a well flow device by fiber optic sensing. A system includes processing circuitry configured to be disposed downhole in a wellbore. The processing circuitry is configured to receive a downhole parameter signal that represents an operational parameter of a well flow device in the wellbore, and perturb a fiber optic cable, based on the downhole parameter signal, to transmit the downhole parameter signal over the fiber optic cable. A fiber optic sensing system is coupled to the processing circuitry via the fiber optic cable. The fiber optic sensing system is configured to be disposed outside of the wellbore to extract, from the fiber optic cable, the downhole parameter signal.
Abstract:
An optical waveguide pumping method can include pumping a liquid fluid through a conduit, thereby pumping an optical waveguide into the conduit, and operating a fluid recovery device, so that fluid pressure in the conduit is less than a vapor pressure of the fluid and/or fluid temperature in the conduit is reduced from above a boiling point temperature of the fluid to below the boiling point temperature of the fluid. An optical waveguide pumping system can include a pump which pumps a liquid fluid into a conduit and thereby pumps an optical waveguide into the conduit, and a fluid recovery device connected to the conduit. The fluid recovery device reduces fluid pressure in the conduit to below a vapor pressure of the fluid and/or reduces fluid temperature in the conduit from above a boiling point temperature of the fluid to below the boiling point temperature of the fluid.
Abstract:
Various embodiments include apparatus and methods to measure a parameter of interest using a fiber optic cable. The parameters can be provided by a process that provides for multiplexed or distributed measurements. A multiplexed or a distributed architecture can include acoustic sensor units placed selectively along an optical fiber such that the acoustic sensor units effectively modulate the optical fiber with information regarding a parameter to provide the information to an interrogator coupled to the optical fiber that is separate from the acoustic sensor units.
Abstract:
A method for re-calibrating installed downhole sensors used in hydrocarbon wells by the application of a calibration string inserted in the wells and deployed in close proximity to the installed downhole sensor.