Abstract:
A data transmission method and a communications apparatus are described that reduce complexity and overhead of data reception performed by a base station. The method includes receiving information about a repetition quantity R1 corresponding to Tmax, where Tmax is a maximum transport block size allowed to be used to transmit data. The method further includes determining a cyclic parameter L based on R1, where the cyclic parameter L indicates that content carried in each of a plurality of time units to which a transport block used to transmit the data is mapped is repeated in L consecutive time units, and wherein a size of the transport block actually used to transmit the data is Ts, and Ts is less than a maximum transport block size (Tmax). The method further includes transmitting the data based on the cyclic parameter L.
Abstract:
An information indication method is provided, including: A terminal-side device receives first higher layer signaling from a network-side device, where the first higher layer signaling is used to configure N bandwidth parts BWPs, and N is a positive integer. The terminal-side device receives downlink control information from the network-side device, where the downlink control information includes an indication field. When N is less than a maximum quantity of BWPs that can be configured through the first higher layer signaling when the terminal-side device is in a connected mode (for example, an RRC connected mode) or a maximum quantity of BWPs that can be determined by using candidate bit states of the indication field that is used to determine an active BWP and that is in the downlink control information, the indication field indicates a position of the active BWP located in an initial BWP and the N BWPs.
Abstract:
Example uplink transmission resource requesting methods and apparatus are described. One example method includes a terminal determines that a collision occurs when the terminal sends a first request to a network device, where the first request is used to request the network device to schedule an uplink transmission resource for the terminal. The terminal adjusts a manner of sending the first request according to a preset rule. In embodiments of this application, the terminal may request the uplink transmission resource from the network device by using the first request.
Abstract:
Embodiments of this application provide a data sending method, a data receiving method, a transmit-end device, and a receive-end device. The data sending method provided in the embodiments of this application may include: performing scrambling code initialization to generate a scrambling code; scrambling a data block based on the scrambling code; repeatedly sending the scrambled data block; performing scrambling code initialization to generate a new scrambling code when an interval after previous scrambling code initialization of the data block is greater than or equal to a preset scrambling code initialization parameter threshold; scrambling the data block again based on the generated new scrambling code; and repeatedly sending the data block scrambled again. The embodiments of this application can improve efficiency of data transmission between a transmit-end device and a receive-end device.
Abstract:
An uplink information sending method and apparatus is provided. The method includes obtaining, by user equipment, downlink control information DCI and downlink data, the DCI carries a portion of uplink scheduling information of the user equipment, the uplink information is used to indicate whether the user equipment receives the downlink data correctly, the portion of the uplink scheduling information is specifically indication information excluding a specific parameter of the user equipment, and the specific parameter includes at least one of an uplink modulation and coding scheme MCS or information used to indicate duration for sending the uplink information. The method also includes sending, by the user equipment, the uplink information according to the portion of the uplink scheduling information and the specific parameter, where the specific parameter is a parameter preset in the user equipment or a parameter received by the user equipment from a system message.
Abstract:
A data transmission method in the present application includes: determining, by first UE, a frame structure in a time unit, where the frame structure indicates that N type-1 OFDM symbols and a GP are included in the time unit, and a subcarrier spacing of each type-1 OFDM symbol is Δf1. Therefore, according to the data transmission method and the user equipment in embodiments of the present application, a frame structure in a time unit is determined. The frame structure indicates that N type-1 OFDM symbols and a GP are included in the time unit, and a subcarrier spacing of each type-1 OFDM symbol is Δf1. Therefore, when an NB-IOT system is deployed in an LTE system in an embedded manner, and when NB-IOT UE is sending data, a channel resource of the legacy LTE system can be adequately utilized, and a conflict with a legacy LTE SRS can be avoided.
Abstract:
Embodiments of this application provide a data sending method, a data receiving method, a transmit-end device, and a receive-end device. The data sending method provided in the embodiments of this application may include: performing scrambling code initialization to generate a scrambling code; scrambling a data block based on the scrambling code; repeatedly sending the scrambled data block; performing scrambling code initialization to generate a new scrambling code when an interval after previous scrambling code initialization of the data block is greater than or equal to a preset scrambling code initialization parameter threshold; scrambling the data block again based on the generated new scrambling code; and repeatedly sending the data block scrambled again. The embodiments of this application can improve efficiency of data transmission between a transmit-end device and a receive-end device.
Abstract:
A machine type communication (MTC) scheduling method, a base station, and a user equipment (UE). An embodiment of a method in the embodiments of the present disclosure includes sending, by a base station, first downlink control information (DCI) to the UE in an air-interface idle mode in a cell, where the first DCI includes a first resource indicator corresponding to a first identifier of target UE, and the first identifier identifies, during resource scheduling, the target UE in the air-interface idle mode that is scheduled by the base station, and sending, by the base station, a first data packet to the target UE according to the first resource indicator.
Abstract:
Embodiments of the present disclosure disclose a channel quality indicator (CQI) feedback method, user equipment, and a network device. The method includes: receiving, by the user equipment, a secondary pilot receive signal of each single sector and that is obtained after a secondary pilot transmit signal of each single sector transmitted by a network device is transmitted by using a radio channel; estimating, by the user equipment, a channel matrix according to the secondary pilot receive signal of each single sector and the pre-known secondary pilot transmit signal of each single sector; estimating, by the user equipment, a CQI of each single sector according to the channel matrix and a first precoding matrix, and estimating a CQI of each joint sector according to the channel matrix and a second precoding matrix; and feeding back, by the user equipment, each CQI to the network device.
Abstract:
A method for transmitting an absolute grant (AG) value and a user equipment, where the method includes receiving, by a user equipment, a conventional enhanced-absolute grant channel (E-AGCH) and a newly-added grant value detecting E-AGCH that are sent by a network side device, detecting, by the user equipment, AG information carried on at least one channel of the conventional E-AGCH and the newly-added grant value detecting E-AGCH, and controlling data transmission of the user equipment according to a detection result. Hence, continuity of the data transmission of the user equipment may be ensured, and transmission efficiency is improved.