Abstract:
A method includes an access point providing a request for co-location interference information to at least one multiple protocol device. The method continues with the at least one multiple protocol device obtaining co-location interference information in response to the request. The method continues with the at least one multiple protocol device providing the co-location interference information to the access point.
Abstract:
A method for wireless communication begins by determining whether legacy devices are within a proximal region of the wireless communication. The method continues, when at least one legacy device is within the proximal region, formatting a frame to include: a legacy preamble; a signal field; an extended preamble; at least one additional signal field; at least one service field; an inter frame gap; and a data field.
Abstract:
A method for asymmetrical MIMO wireless communication begins by determining a number of transmission antennas for the asymmetrical MIMO wireless communication. The method continues by determining a number of reception antennas for the asymmetrical MIMO wireless communication. The method continues by, when the number of transmission antennas exceeds the number of reception antennas, using spatial time block coding for the asymmetrical MIMO wireless communication. The method continues by, when the number of transmission antennas does not exceed the number of reception antennas, using spatial multiplexing for the asymmetrical MIMO wireless communication.
Abstract:
A method for generating a preamble of an Orthogonal Frequency Division Multiplexed (OFDM) data frame for a multiple input multiple output (MIMO) wireless communication includes determining at least one system condition preamble format parameter. When the system condition preamble format parameter satisfies a first preamble format parameter a preamble having a first preamble format is formed. When the system condition preamble format parameter satisfies a second preamble format parameter, a preamble having a second preamble format is formed. Further, when the system condition preamble format parameter satisfies a third preamble format parameter, a preamble having a third preamble format is formed. The first, second, and third preamble formats differ based upon their lengths, fields, and modulation formats of a high throughput signal field.
Abstract:
A method for multiple protocol wireless communications begins by determining protocols of wireless communication devices within a proximal region. The method then continues by determining whether the protocols of the wireless communication devices within the proximal region are of a like protocol. The method continues by, when the protocols of the wireless communication devices within the proximal region are not of a like protocol, selecting a protocol of the protocols of the wireless communication devices within the proximal region based on a protocol ordering to produce a selected protocol. The method continues by utilizing the selected protocol by the wireless communication devices within the proximal region to set up a wireless communication within the proximal region.
Abstract:
A multi-band receiver includes a first receiver coupled to receive a first desired signal component of an RF signal over a first range of frequencies and generate a first received signal. A second receiver receives a second desired signal component of the RF signal over a second range of frequencies and generates a second received signal. The second receiver includes a harmonic cancellation module that attenuates a harmonic of the first desired signal component that falls within the second range of frequencies.
Abstract:
A receiver includes an antenna array that generates a plurality of received signals from at least a first remote transmitter and a second remote transmitter. Aa plurality of receiver sections process the plurality of received signals to generate a plurality of down-converted signals. A receiver processing module generates a first plurality of reception matrices corresponding to the first remote transmitter based on the plurality of down-converted signals, generates a first reception statistic from a sum based on the first plurality of reception matrices, and generates an association decision corresponding to one of: the first remote transmitter and the second remote transmitter, based on the first reception statistic.
Abstract:
A wireless communication device includes a first receiver section and a second receiver section. The first receiver section receives a first probe signal from a first transceiver at time t1. The second receiver section receives a second probe signal from a second transceiver at time t2, wherein the first and second probe signals have substantially similar carrier frequencies. The first receiver section then receives a first signal from the first transceiver and the second receiver section receives a second signal from the second transceiver in accordance with an adjusted delay. The first and second signals have similar content and have substantially similar carrier frequencies. The adjust delay corresponds to a delta time that is substantially equal to a difference between the time t1 and the time t2 when the difference between the time t1 and the time t2 compares unfavorably to a delay threshold.
Abstract:
Provided is a wireless communication device in a communication system that utilizes unused wireless channels for wireless communications. The wireless communication device determines whether a channel within a frequency spectrum is unused. When the channel is unused, the communication device generates a generic signal in accordance with a frequency spectrum etiquette. The wireless communication device transmits the generic signal to indicate upcoming use of the channel, and in accordance with the frequency spectrum etiquette, transmits a protocol specific signal via the channel in accordance with a specific protocol of a plurality of specific protocols.
Abstract:
Analog signal paths are utilized between a baseband processor and a radio front end to support high throughput communications for a multiple in multiple out radio transceiver that support communications over two or more antennas. Specifically, analog differential I and Q path communication signals are exchanged between a radio front end core and a baseband processor to maximize throughput capacity for high data rate signals. Along the same lines, the impedances of traces and the interface are matched to reduce I/Q imbalance.