摘要:
The present invention relates to cellular radio communication and in particular to providing information on neighbour cells to enable terminals to perform neighbour cell measurements. In the prior art the terminal attempts to make neighbour cell measurements in a reference signal structure that is the same in the neighbour cell as in the cell the terminal camps in. The present invention is based on the insight that the reference signal structure may differ between neighbouring cell for example in the situation of an MBSFN area that is restricted to a region of all cells of a radio network, or in the situation of TDD mode being applied there may be different regions with different allocation of sub-frames for transmission in the uplink and downlink directions. The present invention solves the problem by broadcast information in a cell indicative of the reference signal structure in neighbour cells.
摘要:
Method and apparatus for avoiding or reducing interference between transmissions from a donor eNB to a relay node and down link transmissions from the relay node to at least one mobile terminal, where the transmissions take place in overlapping frequency bands. In the method, at least one interruption is created in a transmission from the relay node to the mobile terminal(s), and during the created interruption, a transmission from the donor eNB is received. This may result in an improved reception of the transmission from the eNB in the relay node.
摘要:
The teachings presented herein propose a separation between the configuration of a sounding signal, and the initialization of the sounding signal. In other words, in at least one example embodiment proposed herein, a base station or other controlling entity separates the selection of sounding signal parameters (sounding signal configuration) and the signaling of that configuration information to a mobile terminal from the Ordering” or other initiation of sounding signal transmission. Thus, a mobile station may be sent sounding signal configuration information and subsequently be commanded (implicitly or explicitly) to begin sounding signal transmissions according to the previously provided configuration information.
摘要:
The available transmission resources on a downlink-shared channel are divided into resource blocks, each resource block comprising a predetermined number of sub-carriers during a predetermined time period. The resource blocks are subdivided into localized resource blocks and distributed resource blocks. A user requiring sufficient resources can be allocated a plurality of said localized resource blocks. A user who would require only a small number of said localized resource blocks can instead be allocated subunits of a plurality of said distributed resource blocks.
摘要:
A network unit of an own cell is operated in a radio communication system utilizing a radio interface that includes a radio frame made up of a number of sub-frames. The own cell serves one or more user equipments. Operation includes obtaining information about a scheduling of MBSFN data transmissions in one or more neighboring cells. The information thereby obtained is used to generate an information signal that, for a given sub-frame, enables the one or more user equipments to determine whether neighboring cell measurements can be performed using a unicast group of Orthogonal Frequency Division Multiple access (OFDM) symbols. The information signal is transmitted to the one or more user equipments, which can then use the information to determine how to locate cell-specific reference symbols when doing measurements of neighboring cells.
摘要:
A system and a method for wireless linking in a cellular communication system are disclosed such that a mobile station is maintained in simultaneous communication with at least a first node and a second node for access to the cellular communication system. Information going to and from the first node is not identical to the information going to and from the second node. In one embodiment the second node, or secondary access point is a relay node forwarding received information to and from the first node, or primary access point. In another embodiment the second node is another mobile station performing a direct mobile-to-mobile communication (MS-to-MS). In still an embodiment a first wireless link to the first node is for control information only. In still a further embodiment a second wireless link to the second node is only for communication of information from the mobile station or only for communication of information to the mobile station.
摘要:
The technology described in this case facilitates random access by a user terminal with a radio base station. A user terminal determines one of a first type of uplink scrambling sequences and generates a random access message using the determined one of the first type of uplink scrambling sequences. The random access message is transmitted to the base station. The user terminal receives from the base station a second, different type of uplink scrambling sequence and uses it for subsequent communication with the radio base station. For example, the first uplink scrambling sequences may be specifically associated with the radio base station's cell area or a random access radio channel associated with the radio base station, but they are not specifically assigned to any user terminal, and the second uplink scrambling sequence may be selected from a second set of uplink scrambling sequences specifically assignable to individual user terminals.
摘要:
The present invention provides a flexible ARQ scheme. A communications channel is set up between a transmitter and a receiver. A value is selected for an ARQ parameter for data packets to be transmitted over the communications channel. The ARQ parameter value may be selected in accordance with a trade-off between a desired performance or goal, e.g., a specific throughput of data packets transmitted over the communications channel, and one or more communication resources required to support the desired performance or goal. An example of an ARQ parameter is a number of outstanding data packets to be acknowledged by the receiver before more packets can be sent to the receiver. Another parameter example is a delay associated with the ARQ scheme. In a preferred, non-limiting example embodiment, first and second ARQ parameter values are selected for a desired trade-off. Accordingly, a specific number of outstanding data packets to be acknowledged by the receiver and an acknowledgement or retransmission delay can be selected to achieve a desired performance, e.g., a desired throughput of data packets, at a particular resource cost. Because of the flexibility provided by the present invention, a communications device may set its own objectives for a particular connection based upon one or more performance requirements, communication resources, or other requirements.
摘要:
A mobile terminal sends rapidly changing information relating to the downlink transmission of packet data from a base station sector to the mobile terminal at a higher rate on a fast channel. This rapidly changing information may include, for example, a current data transmission rate and/or a current base station sector identification. Information that changes more slowly, such as the identification of a base station to handle the mobile terminal communication, is communicated to the base station at a lower rate on a slow channel. The information received from the mobile terminal at the higher rate is used by the base station to request a particular sector (and preferably also a sector antenna) to transmit data to the mobile terminal and/or to adjust the current maximum data transmission rate to the mobile terminal. A mobile terminal may also make similar sector/rate requests from plural sectors at the same time as well as from plural sector antennas.
摘要:
A technique for operating a network node in a heterogeneously deployed network comprising network nodes of different nominal transmit powers and at least partially overlapping coverage areas is described. A method implementation of this technique comprises a step of operating the network node in a base mode in which the network node is configured to transmit terminal-specific demodulation reference signals for a first set of terminal devices. The method comprises the further step of selectively activating or deactivating operation of the network node in a Single Frequency Network (SFN) mode in which the network node is configured to transmit, for a second set of terminal devices, the same cell-specific reference nodes as another network node of the heterogeneously deployed network that has a larger nominal transmit power.