Abstract:
Micro-resonant structures form a part of an optical interconnect system that allows various integrated circuits to communicate with each other without being connected by signal wires. Substrates have mounted thereon integrated circuits which include at least one optical communications section. Each optical communications section includes at least one transmitter and/or at least one receiver. Such transmitters may include at least one resonant structure, and such receivers may include a receiver for receiving optical emissions from at least one resonant structure. Substrates may also include, mounted thereon, at least one optical directing element such as a mirror, a lens, or a prism. Optical communications sections may also be isolated from each other using filters.
Abstract:
A device includes an integrated circuit (IC) and at least one ultra-small resonant structure and a detection mechanism are formed on said IC. At least the ultra-small resonant structure portion of the device is vacuum packaged. The ultra-small resonant structure includes a plasmon detector having a transmission line. The detector mechanism includes a generator mechanism constructed and adapted to generate a beam of charged particles along a path adjacent to the transmission line; and a detector microcircuit disposed along said path, at a location after said beam has gone past said line, wherein the generator mechanism and the detector microcircuit are disposed adjacent transmission line and wherein a beam of charged particles from the generator mechanism to the detector microcircuit electrically couples a plasmon wave traveling along the metal transmission line to the microcircuit. The detector mechanism may be electrically connected to the underlying IC.
Abstract:
A device includes a waveguide layer formed on a substrate. An ultra-small resonant structure emits electromagnetic radiation (EMR) in the waveguide layer. One or more circuits are formed on the waveguide layer and each operatively connected thereto to receive the EMR emitted by the ultra-small resonant structure. The waveguide layer may be transparent at wavelengths corresponding to wavelengths of the EMR emitted by the ultra-small resonant structure. The EMR may be visible light and may encode a data signal such as a clock signal.
Abstract:
A device and method is provided that includes a window for coupling a signal between cavities of a device or between cavities of different devices. A wall or microstructure is formed on a surface and defines a cavity. The window is formed in the wall and comprises at least a portion of the wall and is electrically conductive. The cavity can be sized to resonate at various frequencies within the terahertz portion of the electromagnetic spectrum and generate an electromagnetic wave to carry the signal. The window allows surface currents to flow without disruption on the inside surface of the cavity.
Abstract:
A nano-resonating structure constructed and adapted to couple energy from a beam of charged particles into said nano-resonating structure and to transmit coupled energy outside the nano-resonating structure. A plurality of the nano-resonant substructures may be formed adjacent one another in a stacked array, and each may have various shapes, including segmented portions of shaped structures, circular, semi-circular, oval, square, rectangular, semi-rectangular, C-shaped, U-shaped and other shapes as well as designs having a segmented outer surface or area, and arranged in a vertically stacked array comprised of one or more ultra-small resonant structures. The vertically stacked arrays may be symmetric or asymmetric, tilted, and/or staggered.
Abstract:
An electronic transmitter or receiver employing electromagnetic radiation as a coded signal carrier is described. In the transmitter, the electromagnetic radiation is emitted from ultra-small resonant structures when an electron beam passes proximate the structures. In the receiver, the electron beam passes near ultra-small resonant structures and is altered in path or velocity by the effect of the electromagnetic radiation on structures. The electron beam is accelerated to an appropriate current density without the use of a high power supply. Instead, a sequence of low power levels is supplied to a sequence of anodes in the electron beam path. The electron beam is thereby accelerated to a desired current density appropriate for the transmitter or receiver application without the need for a high-level power source.
Abstract:
A device for coupling output from a resonant structure to a plasmon transmission line includes a transmission line formed adjacent at least one element of the light-emitting resonant structure; a detector microcircuit disposed adjacent to the transmission line and wherein a beam of charged particles electrically couples the a plasmon wave traveling along the metal transmission line to the microcircuit.
Abstract:
When using micro-resonant structures, it is possible to use the same source of charged particles to cause multiple resonant structures to emit electromagnetic radiation. This reduces the number of sources that are required for multi-element configurations, such as displays with plural rows (or columns) of pixels. In one such embodiment, at least one deflector is placed in between first and second resonant structures. After the beam passes by at least a portion of the first resonant structure, it is directed to a path such that it can be directed towards the second resonant structure. The amount of deflection needed to direct the beam toward the second resonant structure is based on the amount of deflection, if any, that the beam underwent as it passed by the first resonant structure. This process can be repeated in series as necessary to produce a set of resonant structures in series.
Abstract:
We describe an ultra-small resonant structure that produces electromagnetic radiation (e.g., visible light) at selected frequencies. The resonant structure can be produced from any conducting material (e.g., metal such as silver or gold). In one example, a number of rows of posts are etched or plated on a substrate, with each row having a particular geometry associated with the posts and cavities between the posts. A charged particle beam is selectively directed close by one of the rows of posts, causing them to resonate and produce radiation (e.g., in the visible spectrum at a predominant frequency). Directing the charged particle beam at a different row yields radiation at a different predominant frequency.
Abstract:
We describe an ultra-small structure and a method of producing the same. The structures produce visible light of varying frequency, from a single metallic layer. In one example, a row of metallic posts are etched or plated on a substrate according to a particular geometry. When a charged particle beam passed close by the row of posts, the posts and cavities between them cooperate to resonate and produce radiation in the visible spectrum (or even higher). A plurality of such rows of different geometries are formed by either etching or plating from a single metal layer such that the charged particle beam will yield different visible light frequencies (i.e., different colors) using different ones of the rows.