Abstract:
A terahertz radiation source includes: a cathode configured to emit an electron beam, an anode configured to focus the electron beam emitted from the cathode; a collector facing the cathode and configured to collect the emitted electron beam focused by the anode; an oscillating circuit positioned between the anode and the collector and configured to convert energy of a passing electron beam into electromagnetic wave energy; and an output unit connected to the oscillating circuit and configured to externally emit the electromagnetic wave energy.
Abstract:
The invention relates to a device for the generation of microwaves, comprising a virtual cathode oscillator (1) in coaxial construction having an outer substantially cylindrical tube constituting a cathode (2) and connected to a transmission conductor (14) for feeding the cathode (2) with voltage pulses, as well as an inner substantially cylindrical tube, at least partially transparent for electrons, constituting an anode (3) and connected to a wave guide (13) for the discharge of microwave radiation generated by the formation of a virtual cathode (4) inside a region enclosed by the anode. The device comprises an electrically conductive structure in the form of a reflector (19) disposed adjacent to the anode (3). The cathode (2) comprises a substantially rotationally symmetric, electrically conductive body (15) having a cavity (16). By configuring the cavity (16) in the body (15) of the cathode with a first, lesser depth to that boundary surface (18) of the body which is directly in front of the peripheral part of the closure of the anode (3) against the cathode, and a second, greater depth to the boundary surface (17) of the body directly in front of the central part of the closure of the anode (3) against the cathode, a device for the generation of microwaves is produced, which has higher efficiency and high peak power.
Abstract:
The invention relates to a microwave power tube consisting of an electron gun comprising a cathode that generates an electron beam in a microwave structure of the tube, and a collector for collecting electrons from the beam. In addition, the tube comprises a magnetic device for spreading the beam in the collector, which generates a periodic amplitude-modulated magnetic spread field Bblm. The invention is suitable for microwave power tubes.
Abstract:
A microscale vacuum electronic device (10) provides for a mechanical modulation of cathode (12) position allowing improved high-frequency modulation of an electron beam (24) useful for vacuum electronic devices such as klystrons, klystrodes, and high frequency triodes.
Abstract:
Generating and frequency tuning of modulated high current electron beams and a specific efficient, high current, frequency-tunable device for generating intense radio frequency (RF), microwave electromagnetic fields in a rectangular waveguide. Current multiplication of a modulated seed electron beam is created by an energetic electron beam impacting a thin foil surface. The transmissive-electron-multiplier foils also mitigate both space charge expansion and improve beam propagation effects, by shorting of the radially directed electric field at the axial location of the foil(s). Foil thinness and intensity of the exit fields provide for a multiplication process occurring in a fraction of an RF period. Also included are both a self-excited microwave generator and an amplifier, using a temporally modulated laser to generate a modulated seed electron beam that is amplified. Methods to tune the oscillator are described that allow tunability over a full waveguide band.
Abstract:
The invention relates to a device for producing microwave energy from an electron beam. The device includes:an electron gun (1), allowing the production of an electron beam (8) in a so-called injection zone (3);a microwave modulation circuit (7), allowing the superimposition of an alternating voltage at a given frequency on the voltage of the beam in the injection zone; the amplitude of this voltage is sufficient for ensuring, during one of its alternations, the transition between the passing state and the virtual cathode state, thus causing a modulation of the current carried by the electron beam;an output microwave circuit (4) functioning at the frequency of the modulation signal and excited by the previous modulated current.
Abstract:
An electron beam device which includes a vacuum enclosure which houses an electron gun for producing an annular beam of helically rotating electrons, an iris-loaded waveguide which is supplied with high frequency power and serves to create a high frequency electromagnetic field along the axis of the beam which has a longitudinal electric field component along the beam axis, and a resonator which abstracts high frequency energy from the beam. A coil surrounds the vacuum enclosure to provide a magnetic field of increasing strength with distance downstream in the region of the iris-loaded waveguards whereby the angular velocity of the electrons in the beam is increased with little change in the axial velocity.
Abstract:
A relativistic electron beam device for producing highpower microwave radion. The device comprises an electron beam injection gun, a drift chamber comprising a tube having a plurality of gapped resonant cavities along its length, means for converting the energy-modulated beam and means for extracting rf (microwave) radiation from the density-modulated, relativistic, electron beam.