Abstract:
A method for storing data into a SRDAM. The method comprises the following steps: receiving a plurality of blocks of data; labeling said blocks successively from 1 in step of 1; dividing the label of each of said blocks by M and acquiring a corresponding remainder for each of said block, wherein M is the number of banks in said SRDAM and a positive integer; and storing said blocks in said SRDAM in according to the following rule: any logical adjacent said blocks are located physically at different banks of said SRDAM. Herein, one said block has a remainder I is stored in the (I+1) bank in said SRDAM, I being a non-positive integer. Moreover, wherein a plurality of blocks in the same backs could be stored in sequence, and said blocks are arranged in the order of corresponding remainder.
Abstract:
A safety switch device for gas gun comprises a safety lever, the safety lever has a stopping block, and at an end of the safety lever is defined with an elastic element which is used to make the safety lever return to its original position, a spark lever is defined with an abutting portion, the stopping block of the safety lever abuts against the lower portion of the abutting portion of the spark lever, such that the spark lever cannot be pressed down directly, so as to produce a passive protection mode.
Abstract:
A controlling method and device for data transmission including the steps of providing a system bus for connecting a first transmission channel and a second transmission channel with a command processor, adjusting a transmitting direction of the system bus according to a transmitting direction of the second transmission channel, and proceeding the data processing procedures of the second transmission channel, wherein parts of data processing procedures of the first transmission channel will last during a interval between the system bus adjusting the transmitting direction and the data processing procedures of the second transmission channel start on. The present invention ensure that the independence between every data caching and processing reduces the times of flushing the cached data from the data transmission channel and re-seeking through the source, shortening the transmission time, increasing facileness and improving the efficiency of the data transmission.
Abstract:
In at least one embodiment, the apparatus of the invention is a read sensor comprising a shield, a sensor element, an extra shield between the shield and the sensor element, an extra gap between the shield and the sensor and adjacent the extra shield, and a gap layer between the sensor element and the extra shield. The sensor element is positioned in a sensor layer. With the extra shield adjacent to the sensor element and separated by only the relatively thin gap layer, high areal recording density and excellent instability of the sensor element is obtained. At the same time, by fabricating the extra shield to be not significantly wider than the sensor element, the potential for shorting is minimized by placing both the gap and the thicker extra gap between the sensor lead elements and the shield. In at least one embodiment, the method of the invention is for fabricating a read sensor and comprises depositing an extra gap layer onto a shield, removing a portion of the extra gap layer to form a cavity, depositing an extra shield into the cavity, planarizing the extra gap and the extra shield, depositing a gap layer onto the extra gap and the extra shield, and depositing a sensor element onto the gap layer and adjacent to the extra shield.