Abstract:
The present invention relates to a method and a device for cancelling interference of a terminal in a wireless communication system. More specifically, the method comprises the steps of: receiving information on N (N is a natural number) subbands of a neighboring cell; decoding an interference signal of the neighbor cell on the basis of the information on subbands of the neighbor cell; and cancelling the interference caused by the neighbor cell from a signal which is received from a serving cell, on the basis of the decoded interference signal, wherein the information on the subbands indicates a transmission mode TM of the neighbor cell.
Abstract:
The present invention relates to a wireless communication system. A method for a terminal for transmitting channel state information (CSI) in a wireless communication system according to an embodiment of the present invention comprises the steps of: subsampling a first codebook associated with a first precoding matrix indicator (PMI) and a second codebook associated with a second PMI according to a reporting mode for a four-antenna port; and reporting the channel state information on the basis of the subsampled first codebook and second codebook, wherein a second codebook index for the second PMI may have any one index from a first index group if the first codebook index for the first PMI is an odd number, and if same is an even number, may have any one index from a second index group.
Abstract:
The present invention relates to a wireless communication system and, more specifically, to a method for an operation of cancelling or mitigating interference, and an apparatus therefor. A method of cancelling or mitigating interference in a wireless communication system performed by a terminal includes receiving, from a serving cell, restricted configuration information of an enhanced physical downlink control channel (EPDCCH) which a dominant interference cell transmits, detecting the EPDCCH using the restricted configuration information of the EPDCCH, and performing an operation of cancelling or mitigating interference for the dominant interference cell using the detected EPDCCH, wherein the restricted configuration information of the EPDCCH includes a restricted set of parameters related to the EPDCCH configurable by the dominant interference cell.
Abstract:
A mobile terminal including a case; a touch key mounted in a predetermined portion of the case and configured to generate touch type input data; a light source arranged on a back side of the touch key and configured to emit light; and a light diffusion unit configured to diffuse the light emitted from the light source and provide a backlight to the touch key. Further, the light diffusion unit includes a light guide part configured to guide the light emitted by the light source; an air gap arranged on the light guide part and configured to diffuse the light provided from the light guide part; and a diffuser arranged on the air gap and configured to diffuse the light provided from the air gap towards the touch key.
Abstract:
A method for transmitting a scheduling request (SR) by a terminal in a wireless communication system according to one embodiment of the present specification comprises: a step for receiving setting information related to an SR; and a step for transmitting at least one SR on the basis of the setting information. On the basis of the at least one SR overlapping with a different type of uplink control information (UCI), a UCI bit in which a specific field related to the at least one SR and the different type of UCI are combined is transmitted. On the basis of the at least one SR being related to beam failure recovery (BFR), the specific field indicates the beam failure recovery.
Abstract:
A method for performing fast retransmission in a wireless communication system, according to one embodiment of the present disclosure, is performed by a terminal, and comprises the steps of: receiving downlink data or transmitting uplink data; and performing a hybrid automatic repeat request (HARQ) operation including retransmission, in which transmission and reception of a HARQ-acknowledgement (HARQ-ACK) for the downlink data or the uplink data are not present or retransmission scheduling is not present, for the downlink data and the uplink data.
Abstract:
A method of receiving a downlink control channel at a user equipment (UE) in a wireless communication system is disclosed. The method includes receiving information on a resource element group (REG) bundle size and information on a size of a matrix for interleaving a plurality of REGs configuring at least one control channel element (CCE) through a higher layer, determining the matrix for interleaving the plurality of REGs based on the information on the size of the matrix and the information on the REG bundle size, interleaving the plurality of REGs bundled into one or more REG bundles according to the REG bundle size using the matrix, and receiving the downlink control channel based on the plurality of interleaved REGs.
Abstract:
A user equipment is provided with puncturing information indicating a resource to which downlink data is punctured among time-frequency resources to which the downlink data is allocated. The user equipment may decode the downlink data received in the time-frequency resource on the basis of the puncturing information. The downlink data may be mapped to the time-frequency resource by a combined method of a time-first resource mapping method and a frequency-first resource mapping method, or by a distributed resource mapping method.
Abstract:
According to the present disclosure, a substrate for manufacturing a display device has a structure in which a semiconductor light-emitting device package composed of a plurality of electrodes and semiconductor light-emitting devices can be uniformly aligned. As a result, according to the present disclosure, a semiconductor light-emitting device package that has been transferred by a pick-and-place method in the related art may be allowed to be transferred through self-assembly, thereby having an effect of improving process efficiency (improving process speed and reducing time).
Abstract:
A UE can receive a PDCCH for scheduling a first PDSCH on a serving cell. The UE can receive the first PDSCH from among a plurality of SPS PDSCHs and the first PDSCH on the basis of that i) the first PDSCH overlaps, with respect to time, with the plurality of SPS PDSCHs that are required to be received on the serving cell, and ii) a PDCCH ends at least 14 symbols before the start symbol of the earliest SPS PDSCH from among the plurality of SPS PDSCHs.