Abstract:
Aspects of the present disclosure provide a time division duplex (TDD) subframe structure that supports both single and multiple interlace modes of operation. In a single interlace mode, control information, data information corresponding to the control information and acknowledgement information corresponding to the data information are included in a single subframe. In a multiple interlace mode, at least one of the control information, the data information corresponding to the control information or the acknowledgement information corresponding to the data information is included in a different subframe. Both single and multiple interlace modes can be multiplexed together within the TDD subframe structure.
Abstract:
Aspects of the disclosure provide for a thin control channel structure that can be utilized to enable multiplexing of two or more data transmission formats. For example, a thin control channel may carry information that enables ongoing transmissions utilizing a first, relatively long transmission time interval (TTI) to be punctured, and during the punctured portion of the long TTI, a transmission utilizing a second, relatively short TTI may be inserted. This puncturing is enabled by virtue of a thin channel structure wherein a control channel can carry scheduling information, grants, etc., informing receiving devices of the puncturing that is occurring or will occur. Furthermore, the thin control channel can be utilized to carry other control information, not being limited to puncturing information. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Aspects of the present disclosure provide a subframe structure for time division duplex (TDD) carriers that can be entirely self-contained. That is, information transmitted on a TDD carrier may be grouped into subframes, where each subframe provides communication in both directions (e.g., uplink and downlink) in a suitable fashion to enable such communication without needing any further information in another subframe. For example, a single subframe may include scheduling information, data information corresponding to the scheduling information, and acknowledgment information corresponding to the data information.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may determine a transmission gap for a set of transmissions including a first type of transmission and a second type of transmission based at least in part on at least one of a sounding reference signal parameter, a numerology parameter, or an antenna parameter. In some aspects, the user equipment may transmit at least one transmission, the set of transmissions, in accordance with the transmission gap for the set of transmissions based at least in part on determining the transmission gap for the set of transmissions. Numerous other aspects are provided.
Abstract:
Various aspects of the present disclosure provide for methods, apparatus, and computer software for enabling a single media access control (MAC) layer to control a variety of physical (PHY) layers or entities for multiplexing signals corresponding to each of the PHY layers over an air interface. Here, the MAC layer may include a resource manager configured to determine a time-frequency resource allocation within the air interface for communication with one or more subordinate entities utilizing each of the PHY layers. In this way, The MAC entity may provide dynamic control over the allocation of time-frequency resources within a given resource group, which may include transmission time intervals (TTIs) having multiple time scales.
Abstract:
Techniques for wireless communications in a system with long term evolution (LTE) integrated with new radio (NR) are provided. A method for wireless communications includes determining a configuration of component carrier(s) (CCs) of a first radio access technology (RAT) and CC(s) of a second RAT. The method also includes identifying one of the CC(s) in the first RAT as an uplink anchor CC based on the configuration. The method further includes identifying a HARQ timing for at least one of the CC(s) of the second RAT based on at least one of a symbol duration, a transmit time interval (TTI) length or a subframe structure of the one of the CC(s) of the first RAT. The method further yet includes sending feedback to a second node in the identified uplink anchor CC for transmissions received in the CC(s) of the second RAT.
Abstract:
In wireless communication systems that support 5G or NR protocols, subframes used for communication may have different numerology options. Numerology options may refer to the characteristics of the subframe such as a tone spacing within each symbol of the subframe, a symbol duration for each symbol of the subframe, a number of symbols in the subframe, etc. A subframe may include a control channel (e.g., the PDCCH) and a data channel (e.g., the PDSCH). In an aspect, the control channel and the data channel within the subframe may have different numerologies. As such, a need exists to signal the numerology of the subframe to users and to determine whether and how to multiplex the control channel and the data channel into the subframe.
Abstract:
A method and apparatus for enabling flexible guard-bands for a Radio Access Technology (RAT) during wireless communications are described. The method and apparatus include determining, based on one or more guard-band factors, a guard-band configuration message to configure one or more guard-bands of a RAT established with a user equipment (UE). The method and apparatus include transmitting, to the UE over the RAT, the guard-band configuration message. The method and apparatus include receiving, at a UE from a network entity on a RAT, the guard-band configuration message, and adjusting a bandwidth of each of the one or more guard-bands of the RAT based on the guard-band configuration message, the adjusting further comprises adjusting a bandwidth of a transmission channel of the RAT. The method and apparatus include one or more mechanisms for communicating between the UE and the network entity over the adjusted bandwidth of the transmission channel.
Abstract:
Aspects of the present disclosure provided techniques for wireless communications by a base station. An exemplary method generally includes transmitting, on a narrowband region within a wider system bandwidth, a directional primary synchronization signal (DPSS), receiving feedback information from one or more user equipments (UEs) based on the DPSS, wherein the feedback information comprises an indication of a bandwidth capability of a UE that transmitted the feedback information, and allocating resources to the one or more UEs within at least one of the wider system bandwidth or the narrowband region based, at least in part, on the feedback information.
Abstract:
Various aspects described herein relate to hybrid automatic repeat/request (HARQ) communications in a wireless network. A first instance of a HARQ communication is transmitted or received over a first set of one or more links. Based on the transmitting or receiving the first instance of the HARQ communication, a scheduling grant can be received for a second instance of the HARQ communication over a second set of one or more links different from the first set of one or more links. The second instance of the HARQ communication can accordingly be transmitted or received over the second set of one or more links based at least in part on the scheduling grant.