摘要:
Configurable phase-locked loop circuitry is provided. The phase-locked loop circuitry may include a buffer having a buffer output and a multiplexer having inputs and an output. The phase-locked loop circuitry may include multiple voltage-controlled oscillators. The phase-locked loop circuitry may be configured to switch a desired one of the voltage-controlled oscillators into use. Each voltage-controlled oscillator may be controlled by control signals applied to a control input for that voltage-controlled oscillator. The control input of each voltage-controlled oscillator may be connected to the buffer output. The output of each voltage-controlled oscillator may be connected to a respective one of the multiplexer inputs. Power-down transistors may be used to disable unused voltage-controlled oscillators to conserve power. The power-down transistors and the multiplexer may be controlled by signals from programmable elements. One or more of the voltage-controlled oscillators may be implemented using a separate integrated circuit connected using through-silicon vias.
摘要:
A serial interface for a programmable logic device supports a wide range of data rates by providing a first number of channels supporting a first range of data rates and a second number of channels supporting a second range of data rates. The first range of data rates is preferably lower than the second range of data rates and preferably the first number of channels is higher than the second number of channels which preferably is 1. For backward compatibility with existing devices, the first number of channels in each interface preferably is four. Each channel preferably includes a physical medium attachment module and a physical coding sublayer module. Each of the higher-speed channels in the second number of channels preferably also includes a clock management unit, while the lower-speed channels in the first number of channels preferably share one or more clock management units.
摘要:
Systems and methods for accurately and quickly simulating link performance of a transceiver operating with any given transmission medium are provided. Accurate and quick link simulations may be provided using a link simulation platform. The link simulation platform may simulate link performance using transceiver behavioral models (e.g., transmitter and receiver behavioral models) that incorporate silicon level parameters, which parameters enable the behavioral models to substantially emulate the actual behavior of the transceiver portions of the link.
摘要:
Incoming data at a high-speed serial receiver is digitized and then digital signal processing (DSP) techniques may be used to perform digital equalization. Such digital techniques may be used to correct various data anomalies. In particular, in a multi-channel system, where crosstalk may be of concern, knowledge of the characteristics of the other channels, or even the data on those channels, may allow crosstalk to be subtracted out. Knowledge of data channel geometries, particularly in the context of backplane transmissions, may allow echoes and reflections caused by connectors to be subtracted out. As data rates increase, fractional rate processing can be employed. For example, the analog-to-digital conversion can be performed at half-rate and then two DSPs can be used in parallel to maintain throughput at the higher initial clock rate. At even higher rates, quadrature techniques can allow analog-to-digital conversion at quarter-rate, with four DSPs used in parallel.
摘要:
A programmable logic device architecture. This programmable logic architecture includes a first logic block (425) containing programmable logic elements for performing logic functions. The architecture may also include a diagnostic block interface (415), which interfaces with the first logic block (425), for performing JTAG functions, configuring the first logic block (425), initializing the first logic block (425), interfacing with off-chip diagnostic and test devices and equipment, and performing other similar functions. The first logic block (425) may be programmably coupled to other components on the integrated circuit using a first programmable interconnect network (511). The first logic block (425) includes a plurality of second logic blocks (505) which may be programmably coupled using a second programmable interconnect network (521). The second programmable interconnect network (521) may be programmably coupled to the first programmable interconnect network (511). Furthermore, the plurality of second logic blocks (505) include a plurality of third logic blocks (525) which may be programmably coupled using a third programmable interconnect network (535). A signal from a third logic block (525) may be programmably coupled to the other logic blocks, the diagnostic block interface (415), and other circuitry on the integrated circuit. The internal circuitry of these logic blocks may be monitored through a variety of programmable interconnect paths. This architecture is useful when debugging a design, especially for emulation and prototyping applications.
摘要:
A programmable logic device has embedded random access memory (“RAM”) that can function equally well in either single-port or dual-port operation. The RAM is dual-port RAM whose read address inputs and write address inputs are both connected to a conductor bus via two different sparsely populated programmable interconnection resources. The programmable interconnection resources are arranged so that each pair of corresponding read address and write address inputs can be connected to at least one conductor in common on the conductor bus, allowing the RAM to be configured to mimic a single-port RAM as read address signals and write address signals originating at remote components of the programmable logic device “think” they are being directed to the same address inputs.
摘要:
A programmable logic device (PLD) that provides the capability to observe and control the logic state of buried internal nodes is disclosed. The PLD provides shadow storage units for internal nodes such as logic element registers, memory cells, and I/O registers. A sample/load data path includes bidirectional data buses and shift register that facilitate the sampling of internal nodes for observing their logic states, and loading of internal nodes for controlling their logic states.
摘要:
A programmable logic device (PLD) that provides the capability to observe and control the logic state of buried internal nodes is disclosed. The PLD provides shadow storage units for internal nodes such as logic element registers, memory cells, and I/O registers. A sample/load data path includes bidirectional data buses and shift register that facilitate the sampling of internal nodes for observing their logic states, and loading of internal nodes for controlling their logic states.
摘要:
An integrated circuit for implementing reconfigurable logic, such as a field programmable gate array ("FPGA"), as described herein has multiple blocks of multi-ported memory. The memory has a plurality of read ports and a plurality of write ports. Each port of the multi-ported memory can be configured with a width and depth that is independent and separate from the width and depth of the other ports. The memory also includes a port for taking a synchronous snapshot of the contents of the memory or for loading the memory to an initial state. The memory shares routing lines used by a low level logic element thereby alleviating the need to add routing lines to an interconnect network just to satisfy the memory requirements.
摘要:
An integrated circuit for implementing reconfigurable logic, such as a field programmable gate array ("FPGA"), as described herein has multiple blocks of multi-ported memory. The memory has a plurality of read ports and a plurality of write ports. Each port of the multi-ported memory can be configured with a width and depth that is independent and separate from the width and depth of the other ports. The memory also includes a port for taking a synchronous snapshot of the contents of the memory or for loading the memory to an initial state. The memory shares routing lines used by a low level logic element thereby alleviating the need to add routing lines to an interconnect network just to satisfy the memory requirements.