摘要:
A lead having a pre-formed biased portion is adapted for implantation with a body vessel and for connection to a signal generator. The lead is constructed and arranged so that when it is implanted, the electrodes are biased toward a vessel wall by the preformed biased portion, which operates to fixate the lead against the vessel wall.
摘要:
Devices configured to perform an adaptive method for initiating charging of high power capacitors and delivering therapy to a patient after the patient experiences a non-sustained arrhythmia. The adaptive methods adjust persistence criteria used to analyze an arrhythmia prior to initiating a charging sequence to deliver therapy.
摘要:
Methods of using a template having a template data set and template parameters to provide improved alignment of captured cardiac signal data to a stored template. More particularly, in an illustrative method, a captured cardiac signal is first configured using template parameters for a stored template. Then, once configured, the captured cardiac signal is then compared to the stored template. Other embodiments include implantable cardiac treatment devices including operational circuitry configured to perform the illustrative method. In a further embodiment, more than one stored templates may be used. Each template can have independently constructed parameters, such that a single captured cardiac signal may be configured using first parameters for comparison to a first template, and using second parameters for comparison to a second template.
摘要:
Implementations of various technologies described herein are directed toward a sensing architecture for use in cardiac rhythm management devices. The sensing architecture may provide a method and means for certifying detected events by the cardiac rhythm management device. Moreover, by exploiting the enhanced capability to accurately identifying only those sensed events that are desirable, and preventing the use of events marked as suspect, the sensing architecture can better discriminate between rhythms appropriate for device therapy and those that are not.
摘要:
A cardiac rhythm management system includes a time-dependent frequency response for sensed heart signals. A change in the frequency response of a sensing circuit is triggered by a sensed or evoked event to make it less sensitive to the detection of a subsequent event for a period of time. For example, a passband bandwidth is reduced, then increased during the time period triggered by the event. For even more event-triggered selectivity, a gain is reduced, then increased during the time period triggered by the event. This provides better discrimination between particular events included in a heart signal so that appropriate therapy can be delivered to the patient based such events.
摘要:
Adaptive methods for initiating charging of the high power capacitors of an implantable medical device for therapy delivery after the patient experiences a non-sustained arrhythmia. The adaptive methods adjust persistence criteria used to analyze an arrhythmia prior to initiating a charging sequence to deliver therapy.
摘要:
Methods of using a template having a template data set and template parameters to provide improved alignment of captured cardiac signal data to a stored template. More particularly, in an illustrative method, a captured cardiac signal is first configured using template parameters for a stored template. Then, once configured, the captured cardiac signal is then compared to the stored template. Other embodiments include implantable cardiac treatment devices including operational circuitry configured to perform the illustrative method. In a further embodiment, more than one stored templates may be used. Each template can have independently constructed parameters, such that a single captured cardiac signal may be configured using first parameters for comparison to a first template, and using second parameters for comparison to a second template.
摘要:
The implantable cardiac treatment system of the present invention is capable of choosing the most appropriate electrode vector to sense within a particular patient. In certain embodiments, the implantable cardiac treatment system determines the most appropriate electrode vector for continuous sensing based on which electrode vector results in the greatest signal amplitude, or some other useful metric such as signal-to-noise ratio (SNR). The electrode vector possessing the highest quality as measured using the metric is then set as the default electrode vector for sensing. Additionally, in certain embodiments of the present invention, a next alternative electrode vector is selected based on being generally orthogonal to the default electrode vector. In yet other embodiments of the present invention, the next alternative electrode vector is selected based on possessing the next highest quality metric after the default electrode vector. In some embodiments, if analysis of the default vector is ambiguous, the next alternative electrode vector is analyzed to reduce ambiguity.
摘要:
The present invention is direction toward a detection architecture for use in implantable cardiac rhythm devices. The detection architecture of the present invention provides methods and devices for discriminating between arrhythmais. Moreover, by exploiting the enhanced specificity in the origin of the identified arrhythmia, the detection architecture can better discriminate between rhythms appropriate for device therapy and those that are not.
摘要:
An apparatus and method for delivering electrical shock therapy in order to treat atrial tachyarrhythmias such as fibrillation in which the energy stored in a capacitor used to deliver a shock pulse is monitored and adjusted. A charging circuit is used to charge the capacitor from a supply voltage upon detection of an atrial arrhythmia, and a controller monitors sensed ventricular depolarizations until R-wave synchrony requirements are met so that an atrial shock pulse can be safely delivered. The controller also attempts to maintain the voltage of the capacitor at a specified voltage before delivery of the shock pulse by operation of the charging circuit.