摘要:
A keyless entry system for an automobile is described. The keyless entry system comprises a radio frequency identification (RFID) tag that has been programmed to selectively unlock an automobile when the RFID tag is within a predetermined distance and, optionally, to lock the automobile when the RFID is outside the predetermined distance. An interrogator housed on or within the automobile comprises an actuatable RF signal generator for transmitting an electromagnetic signal and a time-out circuit. Regardless whether the programmed RFID tag is detected, or not, the RF signal generator transmits a first electromagnetic signal having a first limited total continuous transmit time, followed by an interim period of a defined length where the time-out circuit renders the interrogator incapable of transmitting the electromagnetic signal, followed by the RF signal generator transmitting a second electromagnetic signal having a second limited total continuous transmit time.
摘要:
A system is provided for identifying implanted medical devices, leads and systems, as well as objects in close proximity to a patient having an implanted active medical device, using a radio frequency identification (RFID) tag having retrievable information relating to the AIMD, lead system and/or patient. An RFID tag communicator includes a circuit for limiting the total continuous transmit time of an interrogation signal, and a time-out circuit for delaying a second and any subsequent interrogation of the RFID tag.
摘要:
An implantable radio frequency identification (RFID) tag includes a hermetically sealed biocompatible container, an RFID microelectronics chip is disposed within the container, and a biocompatible antenna extends from the RFID microelectronic chip and exteriorly of the container. In an exemplary embodiment the container comprises a housing for an active implantable medical device (AIMD). In another exemplary embodiment the RFID tag is associated with an AIMD. The AIMD may comprise a lead system. The RFID tag may be disposed within a non-hermetically sealed portion of the AIMD, such a header block, and may include information pertaining to the AIMD. Another exemplary embodiment may include a sensor conductively coupled to the RFID microelectronics chip. The sensor may be disposed exterior of or within the container. The sensor measures properties and activities of the human body and the RFID tag is capable of transmitting said measured properties in real time.
摘要:
A feedthrough terminal assembly for active implantable medical devices includes a structural wire bond pad for a convenient attachment of wires from either the circuitry inside the implantable medical device or wires external to the device. Direct attachment of wire bond pads to terminal pins enables thermal or ultrasonic bonding of lead wires, while shielding the capacitor or other delicate components from the forces applied to the assembly during attachment of the wires.
摘要:
A feedthrough terminal assembly for an active implantable medical device includes a conductive ferrule conductively coupled to a housing of the medical device, a feedthrough capacitor conductively coupled to the ferrule, an inductor closely associated with the capacitor in non-conductive relation, and a conductive terminal pin extending through the capacitor and the inductor. The terminal pin extends through the inductor in non-conductive relation and is conductively coupled to active electrode plates of the capacitor. In one preferred form, the terminal pin is wound about the inductor. Additionally, the inductor may be maintained in close association with the capacitor without forming a direct physical attachment therebetween.
摘要:
An implantable radio frequency identification (RFID) tag includes a hermetically sealed biocompatible container, an RFID microelectronics chip is disposed within the container, and a biocompatible antenna extends from the RFID microelectronic chip and exteriorly of the container. In an exemplary embodiment the container comprises a housing for an active implantable medical device (AIMD). In another exemplary embodiment the RFID tag is associated with an AIMD. The AIMD may comprise a lead system. The RFID tag may be disposed within a non-hermetically sealed portion of the AIMD, such a header block, and may include information pertaining to the AIMD. Another exemplary embodiment may include a sensor conductively coupled to the RFID microelectronics chip. The sensor may be disposed exterior of or within the container. The sensor measures properties and activities of the human body and the RFID tag is capable of transmitting said measured properties in real time.
摘要:
A system is provided for identifying implanted medical devices, leads and systems, as well as objects in close proximity to a patient having an implanted medical device (IMD), using a radio frequency identification (RFID) tag having retrievable information relating to the IMD, lead system and/or patient. An RFID tag communicator includes a circuit for limiting the total continuous transmit time of an interrogation signal, and a time-out circuit for delaying a second and any subsequent interrogation of the RFID tag. An external IMD programmer incorporating a multi-functional RFID reader is capable of identifying and communicating with various types of implanted medical devices, even if such devices are made by different manufacturers.
摘要:
A transient voltage suppressing (TVS) circuit includes an implantable RFID chip, an antenna associated with the RFID chip, and a transient voltage suppressor electrically connected in parallel to both the RFID chip and the antenna. The transient voltage suppressor may be formed of an array of diodes, such as back-to-back diodes, at least one Zener diode, or back-to-back or series opposing Zener diodes. In preferred embodiments, the antenna is formed of a biocompatible material suitable for long-term exposure to body tissue and body fluids, and the RFID chip and the transient voltage suppressor are disposed within a hermetically sealed biocompatible container.
摘要:
A non-hermetically sealed and biocompatible multi-turn RFID loop antenna is electrically connected to a RFID chip which is enclosed within its own hermetically sealed miniature container. The hermetic seal can be very small and the loop antenna can be relatively large, wherein the entire package is both highly reliable, resistant to body fluids and completely biocompatible. The RFID structure can be implanted in a patient and later communicate with an RFID interrogator to provide information relating to the patient and/or implantable medical devices.
摘要:
A feedthrough terminal assembly for an active implantable medical device includes a conductive terminal pin or leadwire, a feedthrough filter capacitor having a first set of electrode plates conductively coupled to the terminal pin or leadwire, and a second set of electrode plates conductively coupled to a housing, ferrule or ground plane of the active implantable medical device, and a non-conductive mullion disposed relative to the terminal pin or leadwire for increasing creepage distance between the terminal pin or leadwire and another conductive element, creating a tortuous path that increases resistance to arcing/flashover.