摘要:
A shielded three-terminal flat-through EMI/energy dissipating filter includes an active electrode plate through which a circuit current passes between a first terminal and a second terminal, a first shield plate on a first side of the active electrode plate, and a second shield plate on a second side of the active electrode plate opposite the first shield plate. The first and second shield plates are conductively coupled to a grounded third terminal. In preferred embodiments, the active electrode plate and the shield plates are at least partially disposed with a hybrid flat-through substrate that may include a flex cable section, a rigid cable section, or both.
摘要:
A feedthrough terminal assembly for active implantable medical devices includes a structural wire bond pad for a convenient attachment of wires from either the circuitry inside the implantable medical device or wires external to the device. Direct attachment of wire bond pads to terminal pins enables thermal or ultrasonic bonding of lead wires, while shielding the capacitor or other delicate components from the forces applied to the assembly during attachment of the wires.
摘要:
A feedthrough terminal assembly for an active implantable medical device includes a conductive ferrule conductively coupled to a housing of the medical device, a feedthrough capacitor conductively coupled to the ferrule, an inductor closely associated with the capacitor in non-conductive relation, and a conductive terminal pin extending through the capacitor and the inductor. The terminal pin extends through the inductor in non-conductive relation and is conductively coupled to active electrode plates of the capacitor. In one preferred form, the terminal pin is wound about the inductor. Additionally, the inductor may be maintained in close association with the capacitor without forming a direct physical attachment therebetween.
摘要:
A shielded three-terminal flat-through EMI/energy dissipating filter includes an active electrode plate through which a circuit current passes between a first terminal and a second terminal, a first shield plate on a first side of the active electrode plate, and a second shield plate on a second side of the active electrode plate opposite the first shield plate. The first and second shield plates are conductively coupled to a grounded third terminal. In preferred embodiments, the active electrode plate and the shield plates are at least partially disposed with a hybrid flat-through substrate that may include a flex cable section, a rigid cable section, or both.
摘要:
In an electromagnetic interference (EMI) filter terminal for an active implantable medical device (AIMD), an insulated and shielded RF telemetry pin is provided to prevent re-radiation of unwanted stray signals, including the telemetry signal itself, to adjacent sensitive circuits or lead wires. The invention provides for an EMI filter terminal assembly for an AIMD including a radio frequency (RF) telemetry pin antenna extending therethrough. The RF telemetry pin antenna includes a conductive shield extending over a portion of the RF telemetry pin antenna in non-conductive relation with the telemetry pin, and conductively connected to a ground associated with the AIMD. The assembly may also include an insulation tube between the RF telemetry pin antenna and the conductive shield covering a portion of the RF telemetry pin antenna.
摘要:
A feedthrough terminal assembly for an active implantable medical device utilizes an insert to establish a reliable electrical connection between capacitor electrode plates, via inner surface metallization of a capacitor aperture, and an associated terminal pin 10, which passes at least partially therethrough. The inserts are preferably resiliently flexible, such as a spring, to establish this connection. The insert also serves to establish a mechanical connection between the capacitor and the terminal pin.
摘要:
An active implantable medical device (AIMD) having a magnetic shield on its housing for shielding the interior of the device from magnetic fields originating outside the housing. The magnetic shield is created using a magnetic absorbing coating on the inner surface of the housing. The AIMD includes an area of the housing left without the magnetic shield, a magnetic window, adjacent to a magnetically actuated device located inside of the housing. The magnetic window permits activation of the magnetically actuated device.
摘要:
A feedthrough terminal assembly for an active implantable medical device (AIMD) includes a conductive terminal pin or lead wire which extends through a conductive ground plane of the AIMD in non-conductive relation. A feedthrough capacitor associated with the terminal pin or lead wire has first and second sets of electrode plates coupled, respectively, to the conductive pin or lead wire and to the ground plane. A breathable electromechanical connection material conductively couples the capacitor's electrode plates to respective components of the AIMD, which allows helium gas to pass freely therethrough during a standard pressurized or vacuum pull helium leak detection test. A breathable washer may be disposed between an alumina insulator and a surface of the capacitor. An additional further breathable coating or conformal coating may be placed over a surface of the feedthrough capacitor disposed toward the interior of the AIMD.
摘要:
A feedthrough terminal assembly for an active implantable medical device (AIMD) includes a conductive terminal pin or lead wire which extends through a conductive ground plane of the AIMD in non-conductive relation. A feedthrough capacitor associated with the terminal pin or lead wire has first and second sets of electrode plates coupled, respectively, to the conductive pin or lead wire and to the ground plane. A breathable electromechanical connection material conductively couples the capacitor's electrode plates to respective components of the AIMD, which allows helium gas to pass freely therethrough during a standard pressurized or vacuum pull helium leak detection test. A breathable washer may be disposed between an alumina insulator and a surface of the capacitor. An additional further breathable coating or conformal coating may be placed over a surface of the feedthrough capacitor disposed toward the interior of the AIMD.
摘要:
An energy management system facilitates the transfer of high frequency energy coupled into an implanted abandoned lead at a selected RF frequency or frequency band, to an energy dissipating surface. This is accomplished by conductively coupling the implanted abandoned lead to the energy dissipating surface of an abandoned lead cap through an energy diversion circuit including one or more passive electronic network components whose impedance characteristics are at least partially tuned to the implanted abandoned lead's impedance characteristics.