Abstract:
A downhole tool, surface equipment, and/or remote equipment are utilized to obtain data associated with a subterranean hydrocarbon reservoir, fluid contained therein, and/or fluid obtained therefrom. At least one condition indicating that a density inversion exists in the fluid contained in the reservoir is identified from the data. Molecular sizes of fluid components contained within the reservoir are estimated from the data. A model of the density inversion is generated based on the data and molecular sizes. The density inversion model is utilized to estimate the density inversion amount and depth and time elapsed since the density inversion began to form within the reservoir. A model of a gravity-induced current of the density inversion is generated based on the data and the density inversion amount, depth, and elapsed time.
Abstract:
Disclosed are methods and apparatus pertaining to processing in-situ, real-time data associated with fluid obtained by a downhole sampling tool. The processing includes generating a population of values for Ĉ, where each value of Ĉ is an estimated value of a fluid property for native formation fluid within the obtained fluid. The obtained data is iteratively fit to a predetermined model in linear space. The model relates the fluid property to pumpout volume or time. Each iterative fitting utilizes a different one of the values for Ĉ. A value Ĉ* is identified as the one of the values for Ĉ that minimizes model fit error in linear space based on the iterative fitting. Selected values for Ĉ that are near Ĉ* are then assessed to determine which one has a minimum integral error of nonlinearity in logarithmic space.
Abstract:
Disclosed are methods and apparatus obtaining in-situ, real-time data associated with a sample stream obtained by a downhole sampling apparatus disposed in a borehole that extends into a subterranean formation. The obtained data includes multiple fluid properties of the sample stream. The sample stream includes native formation fluid from the subterranean formation and filtrate contamination resulting from formation of the borehole in the subterranean formation. The obtained data is filtered to remove outliers. The filtered data is fit to each of a plurality of models each characterizing a corresponding one of the fluid properties as a function of a pumpout volume or time of the sample stream. based on the fitted data, a start of a developed flow regime of the native formation fluid within the subterranean formation surrounding the borehole is identified.
Abstract:
Methods and devices for determining a plus fraction of a plus fraction of a gas chromatogram are provided. A gas chromatogram may obtained, such as from a downhole gas chromatograph module of a fluid analysis tool. The plus fraction of the gas chromatogram may be determined using one or more of a ratiometric determination, fitting an exponential decay function, and fitting a probability density gamma function.
Abstract:
Embodiments of the disclosure can include systems, methods, and devices for determining saturation pressure of an uncontaminated fluid. Downhole saturation pressure measurements and downhole OBM filtrate contamination of a contaminated fluid may be obtained and a relationship may be determined between the saturation pressure measurements and OBM filtrate contamination. The relationship may be extrapolated to zero OBM filtrate contamination to determine the saturation pressure of the uncontaminated fluid. In some embodiments, OBM filtrate contamination may be determined from downhole saturation pressure measurements during pumpout of a fluid.
Abstract:
Various implementations described herein are directed to a method for assessing risks of compartmentalization. In one implementation, the method may include receiving seismic data for a formation of interest; identifying areas in the formation having a dip angle greater than about 30 degrees; performing a plurality of downhole fluid analysis (DFA) within a wellbore around the formation having the dip angle greater than about 30 degrees to identify areas experiencing mass density inversion; and determining the areas experiencing mass density inversion by DFA as having one or more risks of compartmentalization.
Abstract:
The present disclosure relates to methods and apparatus for determining a gas-oil ratio based on downhole fluid analysis measurements and calibrated gas-oil ratio parameters. According to certain embodiments, the parameters for calculating the gas-oil ratio may be calibrated using historical data from the reservoir. For example, previously determined gas-oil ratios may be employed to calibrate the parameters to the reservoir. The calibrated parameters may then be employed during sampling operations to determine the gas-oil ratio.
Abstract:
The present disclosure relates to methods and systems for developing an equation of state model for petroleum fluids. In one embodiment, formation fluid from a plurality of depths within a wellbore may be analyzed to determine a change in a gas oil ratio with respect to depth. The change in the gas oil ratio may be employed to determine a ratio of solubility and entropy terms to a gravity term. The resulting ratio can be used to develop the equation of state model.
Abstract:
The present disclosure relates to methods and apparatus for determining a viscosity-pressure profile of downhole fluid by measuring the viscosity at several different pressures during a sampling operation. According to certain embodiments, the viscosity may be measured at different times during a sampling operation and used to generate the viscosity-pressure profile. For example, the viscosity may be measured at the beginning of pumping, during filling of a sample chamber, during a pressure-build up period, and while retracting the probe. The measured viscosities may then be employed to determine a profile that represents the change in viscosity that occurs with pressure.
Abstract:
A method and apparatus for performing water based mud-filtrate contamination monitoring in real time through evaluation of downhole water sampling.