Abstract:
Pipe replacement devices, and systems are shown. Devices and systems may include jointed cutters and floating cutters to navigate difficult pipe replacement conditions. Devices and systems may also include replacement pipe with pre-installed supply hoses, such as lubricant supply and/or pneumatic supply hoses. Methods of pipe replacement are also described, including splitting old pipe and pulling in new pipe behind the equipment as splitting progresses.
Abstract:
A cable retention and release mechanism includes a cable gripping device including a cable passage. A cable extends through the cable passage. A cable gripping device collar is movably coupled around the cable gripping device. An outer cable gripping device surface is seated against a cable gripping device receiving inner surface preventing movement of the cable gripping device relative to the cable gripping device collar. The cable gripping device receiving inner surface clamps the cable gripping device on the cable and prevents sliding movement of the cable. A jack is movably coupled with the cable gripping device collar. In a first engaged position the jack is engaged against the cable gripping device proximal end. In a second engaged position the jack unseats the outer cable gripping device surface from the cable gripping device receiving inner surface and releases the clamping of the cable.
Abstract:
Pipe splitting apparatuses and systems including a replaceable blade, and methods therefor, are provided. In various examples, a pipe splitting apparatus includes an outer surface including a recess. A blade including a portion is disposed within the recess. A hardenable material is disposed within the recess. The hardenable material is configured to flow upon application to fill empty space within the recess and at least partially around the portion of the blade disposed within the recess. The hardenable material is further configured to harden after application to secure the portion of the blade within the recess and fix the blade to the pipe splitting apparatus.
Abstract:
A puller is provided with a number of advantages. Pullers are described that have a high power to weight ratio, and a high power to volume ratio. Examples of pullers and pulling systems include configurations that provide high cable friction in a small device volume. Examples of pullers and pulling systems also include constant force pulling which is desirable in particular for small diameter pipe replacement. Using pullers and pulling systems as described, minimally invasive pipe replacement operations are possible. Reversible pullers are also provided that decrease the amount of time needed to burst or split multiple segments of pipe.
Abstract:
A splitter system and methods are shown. Examples of splitter systems provide limited possibility of damage to adjacent utilities in the ground. Further, examples of splitter systems relax a shape memory of split pipe, which in turn reduces friction in a splitting operation. Configurations are further shown that provide lubrication to splitting operations in a number of locations along a splitter system. Configurations are also shown that provide electrical isolation to cutting blades.
Abstract:
Pipe replacement devices, and systems are shown. Devices and systems may include jointed cutters and floating cutters to navigate difficult pipe replacement conditions. Devices and systems may also include replacement pipe with pre-installed supply hoses, such as lubricant supply and/or pneumatic supply hoses. Methods of pipe replacement are also described, including splitting old pipe and pulling in new pipe behind the equipment as splitting progresses.
Abstract:
Pipe splitting apparatuses and systems including a replaceable blade, and methods therefor, are provided. In various examples, a pipe splitting apparatus includes an outer surface including a recess. A blade including a portion is disposed within the recess. A hardenable material is disposed within the recess. The hardenable material is configured to flow upon application to fill empty space within the recess and at least partially around the portion of the blade disposed within the recess. The hardenable material is further configured to harden after application to secure the portion of the blade within the recess and fix the blade to the pipe splitting apparatus.
Abstract:
Pipe replacement devices, and systems are shown. Devices and systems may include jointed cutters and floating cutters to navigate difficult pipe replacement conditions. Devices and systems may also include replacement pipe with pre-installed supply hoses, such as lubricant supply and/or pneumatic supply hoses. Methods of pipe replacement are also described, including splitting old pipe and pulling in new pipe behind the equipment as splitting progresses.
Abstract:
A pipe pulling lubrication apparatus includes a pipe anchor having an anchor body. The anchor body includes a first coupling feature near an anchor body proximal portion and a distal pipe coupling feature near an anchor body distal portion. The distal pipe coupling feature is configured to couple and position a replacement pipe exterior surface near an anchor body exterior surface. The lubrication apparatus further includes a lubrication system including a lubricant conduit extending within the anchor body from the distal pipe coupling feature toward an anchor body intermediate portion between the first coupling feature and the distal pipe coupling feature. The lubrication system includes a lubricant distributor having one or more lubricant passages extending from the lubricant conduit toward the anchor body exterior surface, the lubricant distributor is configured to deliver a lubricant to the replacement pipe exterior surface.
Abstract:
A cable puller and associated methods are shown. Useful example methods include pipe bursting using cable pullers as shown. Cable pullers and methods shown provide a mechanical advantage that increases an amount of cable pulled in one cycle. Selected examples are shown that include a pulley located on a distal end of a moving portion of an extending and contracting beam. The pulley and the mechanical advantage it supplies helps to improve the efficiency of the cable puller and reduce manufacturing cost of the cable puller.