摘要:
According to one embodiment, a method for manufacturing a magnetic recording medium includes forming patterns having protrusions and recesses of a ferromagnetic material onto a recording track section and a servo section on a substrate, forming a flattening film, a top surface of which is higher than that of the protrusion of the ferromagnetic material, onto the ferromagnetic material, and performing ion beam etching onto the flattening film up to a top surface of the protrusion of the ferromagnetic material, and determining an end point of flattening etching on the basis of a change in the total number of incident particles by means of an ion counter installed so as to be at an angle θ with respect to a perpendicular direction to the substrate in accordance with a material of the flattening film.
摘要:
A magnetic recording medium has a RAM region and a ROM region. The RAM region includes a plurality of first tracks each having a first magnetic portion. The first magnetic portions in adjacent tracks are separated from each other. The ROM region includes a plurality of second tracks each having a second magnetic portion. A width of the second magnetic portions in a direction perpendicular to a track direction of the first tracks is larger than that of the first magnetic portions in the perpendicular direction.
摘要:
A magnetic recording medium has magnetic patterns formed of a patterned ferromagnetic layer, and a non-magnetic layer including a component of the ferromagnetic layer and separating the magnetic patterns, in which a thickness “a” of the non-magnetic layer and a thickness “b” of the magnetic patterns satisfy a relationship of: a
摘要:
According to one embodiment, a method of manufacturing a discrete track recording medium includes forming protruded magnetic patterns on a substrate, and repeating processes of depositing a nonmagnetic material so as to be filled in recesses between the magnetic patterns and etching back the nonmagnetic material two or more times with rotating the substrate in a plane thereof by an angle less than one revolution.
摘要:
A magnetic recording medium which allows high density recording and has excellent durability can be obtained. A magnetic recording medium includes: a plurality of ferromagnetic material dots arranged on a soft magnetic layer formed on a non-magnetic substrate so as to be separated from one another; and carbon films which are formed on the respective ferromagnetic material dots, each carbon film having a smooth film face shape in a section passing through the center of each ferromagnetic material dot and a film thickness gradually decreasing from the center of the ferromagnetic material dot toward an outer edge thereof.
摘要:
According to one embodiment, a method for manufacturing a substrate for a discrete track recording media, the method includes forming an imprint resist layer on a substrate, imprinting, on the imprint resist layer, a stamper formed with patterns of protrusions and recesses corresponding to recording track zones and servo zones to transfer the patterns of protrusions and recesses to the imprint resist layer, removing the stamper from the imprint resist layer, and diffusing liquefied CO2 in a process chamber set at a pressure of 2 to 5 atm, diffusing liquefied H2O in the process chamber set at a pressure of 0.01 to 1 atm, or diffusing a reactive gas selected from a group consisting of liquefied CF4, CHF3, SF6, and C2F6 in the process chamber set at an arbitrary pressure, to jet spray the liquefied gas onto a surface of the substrate.
摘要翻译:根据一个实施例,一种用于制造用于离散轨道记录介质的基板的方法,所述方法包括在基板上形成压印抗蚀剂层,在压印抗蚀剂层上压印形成有对应于记录的突起和凹部的图案的压模 轨道区域和伺服区域,以将突起和凹陷的图案转印到抗蚀剂层,从压印抗蚀剂层移除压模,并将液化CO 2扩散到设置在压力为2的处理室中 至5atm,在处理室中扩散液化H 2 O 2,压力为0.01至1atm,或扩散选自液化CF 4 >,CHF 3 3,SF 6 6和C 2 F 6 6在设置在任意压力下的处理室中 将液化气喷射到基板的表面上。
摘要:
A magnetic recording media includes a toroidal substrate, a surface thereof is divided into a recording area located in a central part between an outer peripheral edge and an inner peripheral edge, edge areas located within 100 μm or more and 2,000 μm or less from the outer and inner peripheral edges, respectively, and adjacent areas located between the edge areas and the recording area, respectively, a magnetic film on the substrate, and a protective film on the magnetic film, in which the magnetic film is thinner in the edge areas than that in the adjacent areas, and at least a part of the protective film in the edge areas is thicker than that in the adjacent areas.
摘要:
A method of manufacturing a patterned magnetic recording medium includes coating a magnetic film with a resist which is decomposed by exposure to electromagnetic radiation or an electron beam to have a low molecular weight, forming a pattern on the resist by an imprinting method, transferring the pattern to the magnetic film by using the resist having the pattern formed thereon as a mask, and removing the resist by exposing the resist to the electromagnetic radiation or the electron beam.
摘要:
A method of patterning magnetic material includes forming a ferromagnetic material layer containing one element selected from the group consisting of Fe, Co and Ni on a substrate, selectively masking a surface of the ferromagnetic material layer, and making nonferromagnetic. The making nonferromagnetic step includes exposing an exposed portion in halogen-containing reaction gas, changing magnetism of the exposed portion and a lower layer thereof by chemical reaction, and making the exposed portion a nonferromagnetic material region. A magnetic recording medium is fabricated by using the magnetic material patterning method and includes a plurality of recording regions made of ferromagnetic materials, each containing at least one element selected from the group consisting of Fe, Co and Ni, and a nonferromagnetic material region for separating the recording regions from each other. The nonferromagnetic material region is a compound region of the ferromagnetic material and halogen.
摘要:
A method of patterning magnetic material includes forming a ferromagnetic material layer containing one element selected from the group consisting of Fe, Co and Ni on a substrate, selectively masking a surface of the ferromagnetic material layer, and making nonferromagnetic. The making nonferromagnetic step includes exposing an exposed portion in halogen-containing reaction gas, changing magnetism of the exposed portion and a lower layer thereof by chemical reaction, and making the exposed portion a nonferromagnetic material region. A magnetic recording medium is fabricated by using the magnetic material patterning method and includes a plurality of recording regions made of ferromagnetic materials, each containing at least one element selected from the group consisting of Fe, Co and Ni, and a nonferromagnetic material region for separating the recording regions from each other. The nonferromagnetic material region is a compound region of the ferromagnetic material and halogen.