Abstract:
Disclosed is a stator structure of a rotary device and its forming method. The method for forming a stator structure includes the steps of (a) forming a first part having a first middle portion with a through hole, and M pieces of extending portions extending from the first middle portion, (b) forming a second part having a second middle portion with a through hole, and N pieces of extending portions extending from the second middle portion, (c) alternately bending the M pieces of extending portions of the first part toward a first direction and alternately bending the N pieces of extending portions of the second part toward a second direction opposite to the first directon, respectively, and (d) correspondingly combining the first and second parts together to form the stator structure in which the bent extending portions of the first and second parts constitute a columnar portion of the stator structure for winding a coil thereon, wherein M and N are even numbers not less than four, respectively.
Abstract:
A centrifugal fan with stator blades. The centrifugal fan includes a first frame, a second frame, a driving device, and a blade structure with a first portion and a second portion. The second frame includes a plurality of stator blades thereon. The first portion is coupled with the driving device, and includes a plurality of first rotor blades thereon. The second portion is combined with the first portion and includes a plurality of second rotor blades thereon. The stator blades are located between the first rotor blades and the second rotor blades respectively.
Abstract:
The heat-dissipating module includes at least one heat-dissipating device and a terminal mounted and fixed on one side of the heat-dissipating device and electrically connected with the heat-dissipating device. As the heat-dissipating module is inserted into a frame of the system, the terminal will be received by a receptacle inside the system such that the heat-dissipating module can be electrically connected to the system. The heat-dissipating module can be easily dissembled and replaced in a system without turning off the system and can provide the best heat-dissipating efficiency in a limited space of the system without being affected by the inside height or thickness of the system.
Abstract:
A modified mounting structure for a heat-dissipating device. The heat-dissipating device has a motor and a seat with a slot mounted on a base or the cover portion of a stator thereof. The seat secures a motor controller of the heat-dissipating device detecting phase changes of the magnetic poles of the motor. The structure of a heat-dissipating device reduces required components, manufacturing cost and assembly time, and the control circuit is greatly simplified.
Abstract:
A fan is disclosed for use in a system, and the system has at least one connection structure. The fan is mainly composed of an impeller and a base, and the impeller is connected to the base. The impeller at least has a hub, a plurality of blades and a driver. The base has at least one engaging member, and the engaging member is corresponding to the connection structure. Further, the fan is fixed on the system by connecting the engaging member and the connection structure together.
Abstract:
A heat-dissipating assembly includes a plurality of heat-dissipating devices, each of which includes a frame having at least one locating window for allowing the heat-dissipating device to inhale air and discharge airflow, and a stream-guiding wall formed beside the locating window; and at least one blade structure mounted in the locating window of the frame. In addition, each heat-dissipating device further includes at least one engaging medium to be engaged with a corresponding engaging medium of another heat-dissipating device, thereby allowing the plurality of heat-dissipating devices to be combined in parallel, side by side, or in tiers.