Abstract:
An embodiment includes a system comprising: a substrate of a medical device; an un-foamed polyurethane coating directly contacting the substrate and fixedly attached to the substrate; a thermoset polyurethane shape memory polymer (SMP) foam, having first and second states, which directly contacts the polyurethane coating and fixedly attaches to the polyurethane coating; wherein the polyurethane coating fixedly attaches the SMP foam to the substrate. Other embodiments are described herein.
Abstract:
An embodiment of the invention includes an expandable implant to endovascularly embolize an anatomical void or malformation, such as an aneurysm. An embodiment is comprised of a chain or linked sequence of expandable polymer foam elements. Another embodiment includes an elongated length of expandable polymer foam coupled to a backbone. Another embodiment includes a system for endovascular delivery of an expandable implant (e.g., shape memory polymer) to embolize an aneurysm. The system may include a microcatheter, a lumen-reducing collar coupled to the distal tip of the microcatheter, a flexible pushing element detachably coupled to an expandable implant, and a flexible tubular sheath inside of which the compressed implant and pushing element are pre-loaded. Other embodiments are described herein.
Abstract:
An embodiment includes a system comprising: a monolithic shape memory polymer (SMP) foam having first and second states; wherein the SMP foam includes: (a) polyurethane, (b) an inner half portion having inner reticulated cells defined by inner struts, (c) an outer half portion, having outer reticulated cells defined by outer struts, surrounding the inner portion in a plane that provides a cross-section of the SMP foam, (d) hydroxyl groups chemically bound to outer surfaces of both the inner and outer struts. Other embodiments are discussed herein.
Abstract:
Implant devices and structures that reduce inflammation and promote healing of the area of implant. Specifically, the use of shape memory open cell biocompatible polymer foams for implants that assist in and promote healing and especially in filling and sealing aneurisms.
Abstract:
Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of making extremely low density foams (up to 0.005 g/cc) via use of combined chemical and physical blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boiling points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.
Abstract:
A device, system and method for treatment of an opening in vascular and/or septal walls including patent foramen ovale. The device has wings/stops on either end, an axis core covered in a shape memory foam and is deliverable via a catheter to the affected opening, finally expanding into a vascular or septal opening where it is held in place by the expandable shape memory stops or wings.
Abstract:
Implant devices and structures that reduce inflammation and promote healing of the area of implant. Specifically, the use of shape memory open cell biocompatible polymer foams for implants that assist in and promote healing and especially in filling and sealing aneurisms.