摘要:
The disclosure is directed to techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination. Additionally, the techniques may be used for shifting between different electrode combinations associated with different stimulation programs or program sets.
摘要:
Proper insertion of medical leads into medical devices is detected at the time the lead is being inserted. An external device initiates impedance testing by the medical device that is receiving the lead prior to the insertion of the lead being completed. The medical device reports back the results of the impedance testing so that the external device can determine whether the lead is properly inserted at the time of lead insertion and can provide an output to a user to indicate whether the lead insertion is proper. The medical device may poll only a last connector expected to be connected before responding, test other connector combinations before or after responding, and so forth.
摘要:
Devices and systems provide for proximity based selection of an implantable medical device for far field communication with an external device. By using a proximity communication that is limited to the IMD of interest during the selection process, the external device can eliminate those IMDs that are in range of far field communications but are able to receive the proximity communication. Thus, information may be shared via a proximity communication that is validated via a far field communication, or shared via a far field communication as a challenge and then validated via a proximity communication. The proximity communication may be used to initially limit the number of devices that respond to a discovery request and then subsequently used to select the intended implantable medical device as well as automatically select the appropriate therapy application corresponding to the selected IMD.
摘要:
Techniques for performing lead functionality tests, e.g., lead impedance tests, for implantable electrical leads are described. In some of the described embodiments, an implantable medical device determines whether a patient is in a target activity state, e.g., an activity state in which lead impedance testing will be unobtrusive, such as when a patient is asleep, or capture information of particular interest, such as when the patient is active, in a particular posture, or changing postures. The implantable medical device performs the lead functionality test based on this determination. Additionally, in some embodiments, the implantable medical device may group a plurality of measurements for a single lead functionality test into a plurality of sessions, and perform the measurement sessions interleaved with delivery of therapeutic stimulation.
摘要:
Devices and systems provide for proximity based selection of an implantable medical device for far field communication with an external device. By using a proximity communication that is limited to the IMD of interest during the selection process, the external device can eliminate those IMDs that are in range of far field communications but are able to receive the proximity communication. Thus, information may be shared via a proximity communication that is validated via a far field communication, or shared via a far field communication as a challenge and then validated via a proximity communication. The proximity communication may be used to initially limit the number of devices that respond to a discovery request and then subsequently used to select the intended implantable medical device as well as automatically select the appropriate therapy application corresponding to the selected IMD.
摘要:
This disclosure describes techniques that support delivering electrical stimulation current via at least two user-selected electrodes of an implantable medical device (IMD) and automatically delivering balancing current below via at least one non-selected electrode. Balancing currents delivered via the at least one non-selected electrode may be configured with an amplitude below a perception threshold of a patient. Delivery of balancing current via the at least one third electrode may allow an implantable medical device to automatically balance the total current delivered to a patient.
摘要:
The disclosure is directed to techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination. Additionally, the techniques may be used for shifting between different electrode combinations associated with different stimulation programs or program sets.
摘要:
Devices and systems provide for proximity based selection of an implantable medical device for far field communication with an external device. By using a proximity communication that is limited to the IMD of interest during the selection process, the external device can eliminate those IMDs that are in range of far field communications but are able to receive the proximity communication. Thus, information may be shared via a proximity communication that is validated via a far field communication, or shared via a far field communication as a challenge and then validated via a proximity communication. The proximity communication may be used to initially limit the number of devices that respond to a discovery request and then subsequently used to select the intended implantable medical device as well as automatically select the appropriate therapy application corresponding to the selected IMD.
摘要:
The disclosure is directed to techniques for shifting between two electrode combinations. An amplitude of a first electrode combination is incrementally decreased while an amplitude of a second, or subsequent, electrode combination is concurrently incrementally increased. Alternatively, an amplitude of the first electrode combination is maintained at a target amplitude level while the amplitude of the second electrode combination is incrementally increased. The stimulation pulses of the electrode combinations are delivered to the patient interleaved in time. In this manner, the invention provides for a smooth, gradual shift from a first electrode combination to a second electrode combination, allowing the patient to maintain a continual perception of stimulation. The shifting techniques described herein may be used during programming to shift between different electrode combinations to find an efficacious electrode combination. Additionally, the techniques may be used for shifting between different electrode combinations associated with different stimulation programs or program sets.
摘要:
This disclosure describes delivery of omnipolar electrical stimulation with an external electrical stimulator. Omnipolar electrical stimulation may involve stimulation with an electrode carried on the housing of an implantable medical device (IMD) while substantially simultaneously delivering stimulation via one or more implanted electrodes having the same polarity as the electrode on the housing. An external medical device (EMD) may simulate the IMD housing electrode with an electrode separate from the electrodes carried on leads implanted near target tissue. This electrode may be an external electrode carried on the external housing of the EMD or an external patch electrode. Alternatively, the electrode may be an implantable electrode coupled to the EMD. The conductivity of the external or implantable electrode may also be optimized to approximate the conductivity of the IMD housing electrode. This electrode coupled to the EMD may be utilized during trial stimulation or chronic, external, stimulation.