Abstract:
The present invention discloses a method for detecting body temperature of a live body. Firstly, an infrared thermometer is used to scan a testee to obtain a plurality of infrared signals. Next, the infrared signals are sequenced to obtain the greatest one thereof. Next, several infrared signals closest to the greatest infrared signal are selected from the sequenced infrared signals. Next, an average infrared signal is worked out from the selected infrared signals. Then, the average infrared signal is converted into a temperature. Thereby, not only the test result is more precise, but also the testee can learn the test result sooner.
Abstract:
A method for storing data into a SRDAM. The method comprises the following steps: receiving a plurality of blocks of data; labeling said blocks successively from 1 in step of 1; dividing the label of each of said blocks by M and acquiring a corresponding remainder for each of said block, wherein M is the number of banks in said SRDAM and a positive integer; and storing said blocks in said SRDAM in according to the following rule: any logical adjacent said blocks are located physically at different banks of said SRDAM. Herein, one said block has a remainder I is stored in the (I+1) bank in said SRDAM, I being a non-positive integer. Moreover, wherein a plurality of blocks in the same backs could be stored in sequence, and said blocks are arranged in the order of corresponding remainder.
Abstract:
A controlling method and device for data transmission including the steps of providing a system bus for connecting a first transmission channel and a second transmission channel with a command processor, adjusting a transmitting direction of the system bus according to a transmitting direction of the second transmission channel, and proceeding the data processing procedures of the second transmission channel, wherein parts of data processing procedures of the first transmission channel will last during a interval between the system bus adjusting the transmitting direction and the data processing procedures of the second transmission channel start on. The present invention ensure that the independence between every data caching and processing reduces the times of flushing the cached data from the data transmission channel and re-seeking through the source, shortening the transmission time, increasing facileness and improving the efficiency of the data transmission.
Abstract:
In at least one embodiment, the apparatus of the invention is a read sensor comprising a shield, a sensor element, an extra shield between the shield and the sensor element, an extra gap between the shield and the sensor and adjacent the extra shield, and a gap layer between the sensor element and the extra shield. The sensor element is positioned in a sensor layer. With the extra shield adjacent to the sensor element and separated by only the relatively thin gap layer, high areal recording density and excellent instability of the sensor element is obtained. At the same time, by fabricating the extra shield to be not significantly wider than the sensor element, the potential for shorting is minimized by placing both the gap and the thicker extra gap between the sensor lead elements and the shield. In at least one embodiment, the method of the invention is for fabricating a read sensor and comprises depositing an extra gap layer onto a shield, removing a portion of the extra gap layer to form a cavity, depositing an extra shield into the cavity, planarizing the extra gap and the extra shield, depositing a gap layer onto the extra gap and the extra shield, and depositing a sensor element onto the gap layer and adjacent to the extra shield.