Abstract:
A gas turbine engine comprises a main compressor section having a downstream most end, and more upstream locations. A turbine section has a high pressure turbine. A tap taps air from at least one of the more upstream locations in the compressor section, passes the tapped air through a heat exchanger and then to a cooling compressor. The cooling compressor compresses ng air downstream of the heat exchanger, and delivers air into the high pressure turbine. The heat exchanger has at least two passes, with one of the passes passing air radially outwardly, and a second of the passes returning the air radially inwardly to the compressor. An intercooling system for a gas turbine engine is also disclosed.
Abstract:
A gas turbine engine includes, among other things, a fan section, a core engine, a bypass passage, and a bypass ratio defined as the volume of air passing into the bypass passage compared to the volume of air passing into the core engine, the bypass ratio being greater than or equal to about 8 at cruise power. A gear arrangement is configured to drive the fan section. A compressor section includes both a first compressor section and a second compressor section. A turbine section is configured to drive the gear arrangement, and may have a low pressure turbine with four stages and a low pressure turbine pressure ratio greater than about 5:1, and a high pressure turbine with two stages. An overall pressure ratio is provided by the combination of a pressure ratio across the first compressor section and a pressure ratio across the second compressor section, and greater than about 40, measured at sea level and at a static, full-rated takeoff power. The pressure ratio across the second compressor section is greater than about 7.
Abstract:
A gas turbine engine comprises a main compressor section having a high pressure compressor with a downstream discharge, and more upstream locations. A turbine section has a high pressure turbine. A tap taps air from at least one of the more upstream locations in the compressor section, passing the tapped air through a heat exchanger and then to a cooling compressor, which compresses air downstream of the heat exchanger, and delivers air into the high pressure turbine. The cooling compressor rotates at a speed proportional to a speed of at least one rotor in the turbine section. The cooling compressor is allowed to rotate at a speed that is not proportional to a speed of the at least one rotor under certain conditions. An intercooling system for a gas turbine engine is also disclosed.
Abstract:
A gas turbine engine comprises a main compressor section having a high pressure compressor with a downstream discharge, and more upstream locations. A turbine section has a high pressure turbine. A tap taps air from at least one of the more upstream locations in the compressor section, passes the tapped air through a heat exchanger and then to a cooling compressor. The cooling compressor compresses air downstream of the heat exchanger, and delivers air into the high pressure turbine. The cooling compressor includes a downstream connection that delivers discharge pressure air to an upstream location in the high pressure turbine and a second tap from an intermediate pressure location within the cooling compressor. The second tap is connected to a downstream location within the high pressure turbine. An intercooling system for a gas turbine engine is also disclosed.
Abstract:
A gas turbine engine according to an example of the present disclosure includes, among other things, a fan section, and a low spool including a low pressure compressor section and a low pressure turbine. A high spool includes a high pressure compressor section. A gear arrangement is defined along an engine axis. The low spool is operable to drive the fan section through the gear arrangement. A mount system includes an aft mount configured to react at least a portion of a thrust load at an engine case generally parallel to an engine axis.
Abstract:
A gas turbine engine comprises a compressor section, a combustor section downstream of the compressor section, and a turbine section downstream of the combustor section. A mid-turbine frame includes an outer case portion and is configured to support the turbine section. At least one shaft defines an axis of rotation, and the turbine section comprises an inner rotor directly driving the shaft. The inner rotor includes an inner set of blades. An outer rotor is positioned immediately adjacent to the outer case portion and has an outer set of blades interspersed with the inner set of blades. The outer rotor is configured to rotate in an opposite direction about the axis of rotation from the inner rotor. A gear system is positioned downstream of the combustor section, is mounted to the mid-turbine frame, and is coupled to the outer rotor to drive the at least one shaft.
Abstract:
A rotor for a gas turbine engine according to an exemplary aspect of the present disclosure includes, among other things, a rotor disk rotatable about an axis and a gas path wall coupled to and radially outward of the rotor disk. The gas path wall bounds a radially inward portion of a gas path. A plurality of rotor spokes are radially intermediate the rotor disk and the gas path wall. The plurality of rotor spokes is circumferentially spaced to define a plurality of cooling channels intermediate the rotor disk and the gas path wall. A thermal barrier coating is disposed on a surface of at least one of the plurality of cooling channels. A method of cooling a rotor assembly is also disclosed.
Abstract:
A rotor for a gas turbine engine includes a plurality of blades which extend from a rotor disk, adjacent ones of the plurality of blades are joined by a flexible web.
Abstract:
A gas turbine engine has a first shaft including a first compressor rotor. A second shaft includes a second compressor rotor disposed upstream of the first compressor rotor. The second compressor rotor has a first overall pressure ratio. The first compressor rotor has a second overall pressure ratio, with a ratio of the first overall pressure ratio to the second overall pressure ratio being greater than or equal to about 3.0.
Abstract:
A spool for a gas turbine engine includes at least one rotor disk defined along an axis of rotation and at least one rotor ring defined along the axis of rotation, with the rotor ring being in contact with the rotor disk. The rotor disk and rotor ring are contoured to define a smooth rotor stack load path.