Abstract:
A method for making apertures in a web comprising providing a precursor web material; providing a pair of counter-rotating, intermeshing rollers, wherein a first roller comprises circumferentially-extending ridges and grooves, and a second roller comprises teeth being tapered from a base and a tip, the teeth being joined to the second roller at the base, the base of the tooth having a cross-sectional length dimension greater than a cross-sectional width dimension; and moving the web material through a nip of the counter-rotating, intermeshing rollers; wherein apertures are formed in the precursor web material as the teeth on one of the rollers intermesh with grooves on the other of the rollers.
Abstract:
Multi-ply fibrous structure products, more specifically embossed multi-ply fibrous structure products and methods for making same are provided.
Abstract:
An embossing system for embossing and perforating at least a portion of a web is provided comprising a first embossing roll having embossing elements and at least a second embossing roll having embossing elements, wherein the elements of the first and second embossing rolls define perforate nips for embossing and perforating the web and wherein at least a predominate number of the perforate nips are substantially oriented in the cross-machine direction. Moreover, substantially all of the nips defined by the embossing elements of the first and second embossing rolls can be substantially oriented in the cross-machine direction. Further, the cross-machine embossing elements are at an angle of about 85° to 95° from the machine direction.
Abstract:
The sheet of tissue paper includes at least one first embossed zone (A1, A2) having protrusions on a surface corresponding to alveoles on the other. The alveoles have a substantially polygonal base and the sheet includes at least one second, unembossed zone (B). In the invention, the alveoles 101′, 102′ are configured along at least one array, the mutually facing sides of two adjacent alveoles define a bridge (P) having rectilinear or substantially rectilinear edges of length L which is larger than its greatest width D, one or several bridges connected to each other subtending a path preferably between two second unembossed zones (B) which are separated by at least one first, embossed zone (A1, A2). The invention also relates to a cylinder embossing such a sheet.
Abstract:
A method of embossing an absorbent web with a machine direction undulatory structure is described. The web has a plurality of ridges extending in its machine direction occurring at a frequency, F, across the web and the method includes providing the web to an embossing station where the web is embossed between a first and second embossing roll, each of which rolls may be provided with a plurality of embossing elements configured to define a plurality of embossing nips. At least a portion of the embossing nips are substantially oriented in a cross-machine direction with respect to the web and have a cross direction length, L. The product F×L is from about 0.1 to about 5.
Abstract:
The present invention relates to processes for producing a deep-nested embossed paper products. The invention relates to a process for producing a deep-nested embossed paper products comprising one or more plies of paper where the resulting embossed ply or plies of paper comprise a plurality of embossments having an average embossment height of at least about 650 μm and have a high finished product wet burst strength relative to the unembossed wet strength. The present invention relates to a process for producing deep-nested embossed paper products comprising the steps of a) delivering one or more plies of paper to a deep-nested embossing process, b) conditioning the one or more plies of paper, wherein the conditioning step comprises heating the one or more plies of paper, adding moisture to the one or more plies of paper, or both heating and adding moisture to the one or more plies of paper, and c) embossing the one or more plies of the paper where the resulting embossed ply or plies of paper comprise a plurality of embossments having an average embossment height of at least about 650 μm.
Abstract:
The device for satinizing and embossing metallized or surface-treated packaging foils comprises three embossing rolls, all three embossing rolls cooperating with one another and the packaging foil being capable of being passed under pressure between the first and the second and between the first and the third embossing rolls in order to produce a satin-finish and a pattern. The first, driven embossing roll has a tooth array composed of individual teeth that are arranged in a homogenous grid, and the other two embossing rolls each have a surface structure that differs from that of the first embossing roll. At least one of the additional embossing rolls has structural elements that are arranged individually or in groups but not in the same grid as on the first roll, the structural element being composed of individual teeth and being arranged circularly on the embossing roll. Such an arrangement provides an effective breaking of the paper substrate of the foil and thus a surface having improved properties. Such a surface is particularly suitable for shadow embossing and for embossing authentication and identification features.
Abstract:
An embossing system is provided for embossing a web having a first embossing roll having embossing elements and a second embossing roll having embossing elements, wherein at least a portion of the embossing elements of the first and second embossing rolls are substantially oriented in the cross-machine direction. The embossing roll may be crowned, may have alignment means, and may be provided with precision gearing.
Abstract:
Multi-ply fibrous structure products, more specifically embossed multi-ply fibrous structure products and methods for making same are provided.
Abstract:
Multi-ply fibrous structure products, more specifically embossed multi-ply fibrous structure products and methods for making same are provided.