Abstract:
A fiber material storage device for a textile includes a storage chute having a chute housing and a supply line leading into the storage chamber. Fiber material is pneumatically conveyed with conveying air into the storage chamber. A cleaning unit in the storage chamber cleans contamination from the conveying air and includes a cleaning chamber. A semipermeable dividing wall is situated between the storage chamber and the cleaning chamber to retain the fiber material in the storage chamber and allow the contaminated conveying air to flow into the cleaning chamber. A filter element is situated in the conveying air flow between the cleaning chamber and outer surroundings to retain the contamination in the cleaning chamber and allow filtered conveying air to escape into the surroundings. The cleaning housing has a collection chamber situated underneath the cleaning chamber, wherein the contamination retained by the filter element settles in the collection chamber.
Abstract:
A device on a spinning preparation machine, for example a tuft feeder, having a feed device comprising at least one slow-speed feed roller and a counter-element, for example a feed tray, with which fibre material can be supplied to a downstream transport device, has a driven transport element, for example a conveyor belt. In order to provide improved delivery from the feed device, or improved takeover by the downstream transport device, and to allow troublefree operation, for the purpose of determining setting values for the optimum speed of the transport element, a function between the measured values of the feed roller speed and the measured values of the transport speed is so determined that the fibre material lies on the moving surface of the transport element.