Abstract:
The present invention discloses a linear compressor in which a piston is driven by a linear motor and linearly reciprocated inside a cylinder to suck, compress and discharge refrigerants. Even though load is varied, the linear compressor performs the operation in a resonance state by estimating a natural frequency of the piston and synchronizing an operation frequency of the linear motor with the natural frequency of the piston, and efficiently handles the load by varying a compression capacity by changing a stroke of the piston.
Abstract:
A driving controlling apparatus for a linear compressor, comprises a controlling unit for detecting a TDC by a phase difference inflection point between a stoke and a current with increasing the stroke by controlling the current applied to a linear motor, and for varying the current applied to the linear motor based on the detected TDC.
Abstract:
An apparatus for controlling an operation of a reciprocating compressor, includes: a control unit for detecting a current pushed amount of a piston when a TDC is detected as an inflection point of a phase difference between stroke and current, comparing the current pushed amount with a pushed amount reference value, and applying a DC voltage applied to a linear motor based on the comparison result. An AC voltage and a DC voltage are applied to the linear motor to increase the stroke, and when the TDC is detected, the current pushed amount is calculated and compared with the pushed amount reference value, and then, the DC voltage or a DC current applied to the linear motor is varied based on the comparison result, thereby obtaining a maximum compression volume without collision of the piston.
Abstract:
An apparatus and method for controlling an operation of a reciprocating compressor are disclosed in which a point of inflection with respect to an operation frequency of the reciprocating compressor is detected at a point of time when a phase difference between current and stroke is uniformly maintained, and an operation of the reciprocating compressor is controlled upon recognizing the detected point of inflection with respect to the operation frequency as a point TDC=O. The apparatus for controlling an operation of a reciprocating compressor includes: a control unit for detecting a phase difference between current and stroke and outputting a frequency inflection point detect signal or a frequency variable signal; and a stroke reference value control unit for determining whether a frequency inflection point has been detected or not according to the frequency inflection point detect signal and outputting a stroke reference value control signal based on the determining result.
Abstract:
An apparatus and method for controlling operations of a reciprocating compressor are disclosed. The apparatus includes a compressor control factor detecting unit for detecting a compressor control factor to detect a stroke value corresponding to a point where TDC (Top Dead Center)≈0 on the basis of a stroke estimate value of a reciprocating compressor and values of a current and a voltage applied to a motor of the reciprocating compressor; a stroke reference value determining unit for determining a stroke reference value on the basis of the detected compressor control factor; and a controller for varying a voltage applied to the reciprocating compressor according to the determined stroke reference value.
Abstract:
An apparatus and method for controlling the operation of a reciprocating compressor are capable of preventing distortion of a current applied to the reciprocating compressor by generating a current amplitude value for compensating a difference value between a stroke reference value of the reciprocating compressor and a stroke estimate value and outputting the current amplitude value in a form of a sine wave to the reciprocating compressor. The apparatus for controlling an operation of a reciprocating compressor generates a current amplitude value for compensating a difference value between a stroke reference value and a stroke estimate value of the reciprocating compressor and outputs the current amplitude value in a sine wave form to the reciprocating compressor.
Abstract:
A method and system for pumping unit with an elastic rod system is applied to maximize fluid production. The maximum stroke of the pump and the shortest cycle time are calculated based on all static and dynamic properties of downhole and surface components without a limitation to angular speed of the prime mover. Limitations of structural and fatigue strength are incorporated into the optimization calculation to ensure safe operation while maximizing pumped volume and minimizing energy consumption. Calculated optimal prime mover speed is applied to the sucker rod pump by means of beam pumping, long stroke or hydraulic pumping unit by controlling velocity, acceleration and torque of the electric prime mover or by controlling pressure and flow rate in hydraulically actuated sucker rod pumping system.
Abstract:
An apparatus and method for monitoring a reciprocating member of a reciprocating piston compressor is presented. The apparatus and method provide a means for measuring parameters of the reciprocating member, such as road load or cross-head temperature and the like, and wirelessly transmitting the data to a receiver. A mobile assembly is attached to a reciprocating member of the compressor, the mobile assembly having a sensor assembly, a wireless transmitter and a power generation assembly. The sensor assembly measures a parameter of the reciprocating member and generates a representative sensor signal. The wireless transmitter wirelessly transmits a corresponding data signal to a stationary assembly mounted nearby. The power assembly powers the transmitter and sensor assembly. The measured data is used, in conjunction with other measurements, such as a crankshaft encoder, to calculate the work performed by the compressor, the power used by the compressor and other information. The compressor utilization is then optimized based on the gathered information.
Abstract:
An apparatus and method for controlling the maximum stroke of a linear compressor is provided. The shorting of the normal supply voltage of a compressor to ground is used to detect overstroking. A plurality of transistors are electrically coupled to the control circuit that is electrically coupled to a linear compressor. When the compressor's stroke exceeds it maximum stroke marked by the refrigerant barrel of the compressor making physical contact with the armature, a signal is received by the control circuit. The control circuit processes this signal and sequences the transistors to return the extended stroke of the compressor to its maximum stroke.
Abstract:
An apparatus and method for controlling the operation of a reciprocating compressor are capable of preventing distortion of a current applied to the reciprocating compressor by generating a current amplitude value for compensating a difference value between a stroke reference value of the reciprocating compressor and a stroke estimate value and outputting the current amplitude value in a form of a sine wave to the reciprocating compressor. The apparatus for controlling an operation of a reciprocating compressor generates a current amplitude value for compensating a difference value between a stroke reference value and a stroke estimate value of the reciprocating compressor and outputs the current amplitude value in a sine wave form to the reciprocating compressor.