Abstract:
A flow balancing ventilation system includes a ventilation inlet for receiving an airflow, the ventilation inlet having a cavity defined by an outer wall. Also included is a plurality of ventilation ducts each having a first end and a second end, the first end of each of the plurality of ventilation ducts disposed in operable communication with the ventilation inlet for receiving the airflow, the second end of each of the plurality of ventilation ducts disposed at least partially within an enclosure. Further included is at least one vane disposed within the cavity of the ventilation inlet for manipulating the airflow proximate the first end of each of the plurality of ventilation ducts.
Abstract:
A gas turbine engine comprises a pre-swirl structure coupled to a shaft cover structure and located radially between a supply of cooling fluid and a flow path. The pre-swirl structure defines a flow passage and includes a plurality of swirl members in the flow passage. A flow direction of cooling fluid passing through the flow passage is altered by the swirl members such that the cooling fluid has a velocity component in a direction tangential to the circumferential direction. The bypass passages provide cooling fluid into a turbine rim cavity associated with a first row vane assembly to prevent hot gas ingestion into the turbine rim cavity from a hot gas flow path associated with a turbine section of the engine.
Abstract:
Disclosed is a method for formation of a thermal bather coating on a gas turbine during operation thereof, which includes addition of an organic compound containing silicon to a fuel under a first condition in order to form a base layer on the surface of a part coming into contact with a combustion gas of the fuel in the gas turbine during operation thereof, as well as addition of the organic compound containing silicon to the fuel under a second condition in order to form a porous layer having more pores than the base layer above the base layer.
Abstract:
A system includes a turbine fuel controller. The turbine fuel controller includes a purge control logic configured to control a purge sequence of mixing a purge gas with a first fuel during a first fuel shutdown, wherein the purge sequence is configured to open a purge valve for the purge gas before fully closing a fuel valve for the first fuel.
Abstract:
The present application provides a turbine blade cooling system. The turbine blade cooling system may include a first turbine blade with a first turbine blade platform having a cooling cavity in communication with a pressure side passage and a second turbine blade with a second turbine blade platform having a platform cooling cavity with a suction side passage. The pressure side passage of the first turbine blade platform is in communication with the suction side passage of the second turbine blade platform.
Abstract:
A vent system is disclosed having a first flow stream flowing over a first surface in a flow path, a conduit that channels a second flow stream and an aero-chimney that is in flow communication with the conduit and located near the first surface wherein the aero-chimney has a body having an aerodynamic shape having a leading edge portion and a trailing edge portion such that the first flow stream flows around the aero-chimney near the first surface.
Abstract:
This invention relates to an apparatus for an entrainment system of a vortex burning combustion chamber or a vortex burning inter-turbine burner in a gas turbine. The entrainment system rapidly and thoroughly mixes hot combustion gases with non-combustion gases to reduce the gas temperature before entering a turbine. The entrainment system includes a plurality of helical vanes forming trenches and resulting in a highly helical flow path. The highly helical flow path provides an increased residence time for mixing of the combustion gases and non-combustion gases. Radial cavities in the helical vanes, canted vane angles and varying geometries further facilitate mixing while reducing losses. This invention also includes a method of mixing combustion and non-combustion gases in an entrainment system.
Abstract:
An assembly for delivering a supply of liquid fuel and a supply of purge air to a gas turbine engine, the assembly comprising: an annular dual-flow check valve for controlling the flow through concentric channels that have a common outlet, the annular dual-flow check valve comprising: an outer body and an inner body that define the concentric channels, which include an outer channel and an inner channel formed therein; a spring activated annular poppet that resides in the outer channel and has a range of motion in the axial direction; and an opening through the inner body that connects the outer channel to the inner channel; wherein the axial movement of the annular poppet is regulated by the pressure of the flow upstream of the annular poppet in the outer channel; and the axial range of motion of the annular poppet includes at least two axial positions.
Abstract:
A device includes a fluid flow channel having a channel inlet for receiving a pressurized fluid for flow through the fluid flow channel and a channel outlet for discharging the pressurized fluid therefrom. A passive flow element is situated within the fluid flow channel or proximate to the channel inlet. The passive flow element includes an element inlet for receiving the pressurized fluid, and an element outlet. The passive flow element also includes a cavity for receiving the pressurized fluid from the element inlet and generating a periodic flow variation of the pressurized fluid so as to modulate the pressurized fluid flow rate through the element outlet.
Abstract:
An oil scavenge system includes a tangential scavenge scoop and a settling area adjacent thereto which separately communicate with a duct which feeds oil into an oil flow path and back to an oil sump. A shield is mounted over the settling area to at least partially shield the collecting liquid oil from interfacial shear. A multiple of apertures are located through the shield to permit oil flow through the shield and into the duct. The scavenge scoop forms a partition which separates the duct into a first portion and a second portion. The first portion processes upstream air/oil mixture that is captured by the tangential scoop while the second portion receives the oil collected in the settling area.