Abstract:
The present inventive concepts relate to an inspection apparatus that snapshots an interference image pattern having a high spatial carrier frequency produced from a one-piece off-axis polarimetric interferometer and that precisely and promptly measures a Stokes vector including spatial polarimetric information. The inspection apparatus dynamically measure in real-time a two-dimensional polarization information without employing a two-dimensional scanner.
Abstract:
Aspects of the disclosure relate to a multi-pass gas cell that includes a set of two or more reflectors, an input collimating optical component, and an output focusing optical component. The input and output optical components are integrated with at least one of the two or more reflectors. For example, the input and output optical components may be integrated on opposite ends of a single one of the reflectors or may be integrated on the same end of a single reflector. The input and output optical components may further be integrated with different reflectors. In some examples, the set of reflectors and optical components may be fabricated within the same substrate.
Abstract:
The present disclosure includes a spectrometric measuring device for a measurement point of the process automation system, including a broadband light source for radiating light through an entrance aperture onto a sample to be measured, wherein the beam bundles of the light form an irradiation plane, a light limiter that limits the light at an angle to the irradiation plane, whereby a different amount of light results at this angle. The device further includes a dispersive element for separating the light according to its wavelength and a detector for receiving light separated according to its wavelength, wherein the light source beams the light through the sample to the entrance aperture, the light limiter and the dispersive element, and the light strikes the detector.
Abstract:
Methods and apparatus are disclosed for detecting one or more species in a sample, wherein laser probe light is frequency swept across at least one infra red absorption spectrum feature of each of the species. A path from the probe light source to a single detector element may be switched between at least one sample absorption cell or volume and one or more reference cells or volumes.
Abstract:
A concentration correction system includes an infrared detector and components that produce an aggregate emission of infrared radiation. A mirror assembly includes a mirror and is changeable between a correcting configuration and a measuring configuration. In the correcting configuration, the mirror produces a mirror signal incident on the detector. The mirror assembly also obstructs external body infrared radiation from reaching the detector. In the measuring configuration, the mirror assembly allows the external body infrared radiation onto the detector. A concentration correction method includes receiving external body infrared radiation and simultaneously receiving a first portion of the aggregate emission. A measurement value indicative of concentration is recorded from the detector. A second portion of the aggregate emission reflected with the mirror and produces a mirror signal incident on the detector. A correction value corresponding to the mirror signal is recorded from the detector and used to correct the measurement value.
Abstract:
A spectral imaging device (12) includes an image sensor (28), an illumination source (14), a refractive, optical element (24A), a mover assembly (24C) (29), and a control system (30). The image sensor (28) acquires data to construct a two-dimensional spectral image (13A) during a data acquisition time (346). The illumination source (14) generates an illumination beam (16) that illuminates the sample (10) to create a modified beam (16I) that follow a beam path (16B) from the sample (10) to the image sensor (28). The refractive, optical element (24A) is spaced apart a separation distance (42) from the sample (10) along the beam path (16B). During the data acquisition time (346), the control system (30) controls the illumination source (14) to generate the illumination beam (16), controls the mover assembly (29) (24C) to modulate the separation distance (42), and controls the image sensor (28) to capture the data.