摘要:
In one embodiment, a packet switching device is configured to operate as a spoke or a hub in a Dynamic Multipoint Virtual Private Network (DMVPN) using one or more initially negotiated service overlay capabilities including service encapsulation to use in communicating service overlay data packets between the packet switching device and another device (e.g., spoke, hub) of the DMVPN over an established tunnel (e.g., secure protocol channel). The packet switching device is further configured to negotiate updated one or more service overlay capabilities including updated service encapsulation to use in communicating service overlay data packets with another device (e.g., spoke, hub) without dropping the already established tunnel. In one embodiment, the negotiation between the packet switching device and another device (e.g., spoke, hub) of the DMVPN uses Next Hop Resolution Protocol (NHRP). In one embodiment, the service encapsulation uses Network Service Header (NSH).
摘要:
In one embodiment, a provider edge packet switching device of a provider network is configured with different Internet Protocol (IP) forwarding information bases (FIBs) depending on whether the forwarding information base is associated with core-facing ingress packet traffic (e.g., packet traffic from the provider network) or customer-facing ingress packet traffic (e.g., packet traffic from a customer network). In the latter case of customer-facing ingress packet traffic, the customer-facing forwarding information base includes load balancing lookup results for load balancing traffic between a customer edge packet switching device and through the provider network. In the case of core-facing ingress packet traffic, the core-facing forwarding information base includes a lookup result for forwarding traffic to a customer edge packet switching device, and does not include the above-referenced load balancing lookup result information.
摘要:
In one embodiment, packets are sent a packet switching mechanism of a packet switching device, which includes partitioning each particular packet into a plurality of cells with each particular packet and cell derived therefrom associated with a same particular timestamp and a same particular ingress point identifier representing an ingress point of a plurality of ingress points of the packet switching mechanism. These cells are sent through the packet switching mechanism by selecting and forwarding, at each of a plurality of points within the packet switching mechanism. A tie-breaking value is determined based on a manipulation of ingress point identifier associated with said identifiable cell in a manner to vary the tie-breaking selection ordering of ingress point identifiers for different timestamp values. The tie-breaking value is used in selecting a next cell to forward when cells are associated with a same timestamp.
摘要:
In one embodiment, a device-independent label is associated with multiple network devices such that the packet switching devices in a network will forward a packet based on the device-independent label to one of these multiple network devices. In one embodiment, these device-independent labels include, but are not limited to, domain-identifying labels and forwarding-punt labels. In one embodiment, a domain-identifying label is defined as a label that identifies a plurality of network nodes without identifying a single particular network node, single particular interface, nor single particular link. In one embodiment, a first-domain forwarding-punt label is placed at the top of the label stack to identify to forward the label-switched packet to any one of a plurality of designated forwarding nodes corresponding to the first-domain forwarding-punt label (e.g., for sending to a packet switching device which will have forwarding information for the second domain-identifying label.).
摘要:
In one embodiment, operations analysis of packet groups identified based on timestamps is performed. One embodiment includes sending a plurality of sent timeframe groups of a plurality of time-stamped packets from a first packet network node towards a second packet network node in a network and recording first information associated with each of the plurality of said sent timeframe groups of the plurality of time-stamped packets. The second network node receives a plurality of received timeframe groups of a received plurality of time-stamped packets of said sent plurality of time-stamped packets and recording second information associated with each of the plurality of said received timeframe groups of the received plurality of time-stamped packets. Operations analysis based on one or more operations characteristics of said first information and said second information to produce analysis results.
摘要:
In one embodiment, micro-loops are avoided in ring topologies of packet switching devices by changing the order of propagation of link state information concerning failed communications between a particular packet switching device and a neighbor packet switching device. In one embodiment, the particular packet switching device communicates link state information of a high cost of the particular communications (e.g., in the direction from particular to neighbor packet switching devices) such that this link state information will propagate towards the particular packet switching device from at least from the furthest packet switching device in the ring topology that is currently configured to forward packets having a destination address of the neighbor packet switching device through the particular packet switching device.
摘要:
In one embodiment, non-eligible distance vector protocol paths are used as backup paths. In one embodiment, the distance vector protocol is Enhanced Interior Gateway Protocol (EIGRP) and unless a path is a feasible successor for a destination, the path is not eligible as a backup path. Therefore, if there is no feasible successor, there is no eligible backup path. One embodiment avoids an initial delay in finding a replacement path for traffic by determining and installing a non-eligible backup path (e.g., a path that is not a feasible successor) in one or more forwarding tables. In this manner, the router can immediately forward packets over this non-eligible backup path until, for example, forwarding in the network can converge in light of the primary path being no longer available.
摘要:
In one embodiment, a network server layer provides disjoint channels in response to client-layer disjoint path requests. For example, the network layer can be an optical network, and the client layer may be a packet switching layer (e.g., label switching, Internet Protocol). In one embodiment, a server-layer node receives a client-layer disjoint path request to provide a server-layer channel through a server-layer network. The client-layer disjoint path request includes an identifier corresponding to an existing client-layer path that traverses a current channel through the server-layer network that does not include the server-layer node. The server-layer network determines a particular channel through the server-layer network that is disjoint to the current channel based on route information of the current channel, and then signaling is performed within the server-layer network to establish the particular channel.
摘要:
In one embodiment, sensor data is transported in a network to a rendezvous point network node, which consolidates the information into a consolidated result which is communicated to the destination. Such consolidation by a network node reduces the number of paths required in the network between the sensors and the destination. One embodiment includes acquiring, by each of a plurality of originating nodes in a wireless deterministic network, external data related to a same physical event; communicating through the network said external data from each of the plurality of originating nodes to a rendezvous point network node (RP) within the network; processing, by the RP, said external data from each of the plurality of originating nodes to produce a consolidated result; and communicating the consolidated result to a destination node of the network. In one embodiment, the network is a low power lossy network (LLN).
摘要:
In one embodiment, a packet switching device includes one or more host devices and a cascade of aggregation nodes. The aggregation nodes aggregate customer traffic and communicate it with the host device. Typically the aggregation nodes are remotely located from the host device. The host device may be connected to one or both ends of the cascaded topology of aggregation nodes. In one embodiment, the cascaded topology of aggregation nodes automatically configures itself using initiation packets. In one embodiment, the cascaded topology of aggregation nodes reacts to detected faults, such as by changing direction packet traffic is sent through the cascaded topology. By cascading aggregation nodes, in contrast to having each aggregation node connected to the host device via one or more point-to-point links, communications costs are decreased in one embodiment.