摘要:
Methods and systems for measuring subsurface electrical conductivity, using first and second sensor coils. The second sensor coil has a smaller effective area and a greater bandwidth than the first sensor coil. The first and second sensor coils are positioned with respect to each other to achieve zero or near zero mutual inductance.
摘要:
An electromagnetic detection system comprising: a transmitter loop for generating a primary magnetic field, and a first pair of spaced apart receiver coils and second pair of spaced apart receiver coils for measuring a secondary magnetic field generated in response to the primary magnetic field. The transmitter loop drives the transmitter to generate the primary magnetic field. The system automatically switches between a first signal measuring mode and a second signal measuring mode, wherein in the first signal measuring mode a difference between signals induced in the receiver coils of the first pair is measured to provide a first receiver coil pair difference signal and a difference between the signals induced in the receiver coils of the second pair is measured to provide a second receiver coil pair difference signal, and in the second signal measuring mode a sum of the signals induced in the receiver coils of the first pair is measured to provide a first receiver coil pair sum signal and a sum of the signals induced in the receiver coils of the second pair is measured to provide a second receiver coil pair sum signal, and the difference between the first receiver coil pair signal and the second receiver coil pair signal is determined.
摘要:
A combined electromagnetic and magnetometer detection system for detecting objects. The system includes a primary electromagnetic transmitter for generating a primary magnetic field; an electromagnetic sensor for sensing secondary magnetic fields generated by a target region subjected to the primary magnetic field; a magnetometer sensor substantially centered at a center of the primary magnetic field; a compensation transmitter for generating a compensating magnetic field that substantially negates the primary magnetic field across the magnetometer sensor; and a signal generator electrically connected to the primary electromagnetic transmitter and the compensation transmitter for driving the transmitters to generate the primary magnetic field and the compensating magnetic field, respectively.
摘要:
A ground conductivity meter that includes a transmitter coil and a receiver coil that are horizontally spaced apart from each other, and a conductivity meter controller connected to the transmitter and receiver coils and including an electronic storage element and at least one processor, the conductivity meter controller being operative to: determine a first conductivity reading in dependence on signals from the receiver coil when the transmitter coil and receiver coil are positioned a predetermined distance above a ground surface in one of a vertical dipole orientation or a horizontal dipole orientation; determine a second conductivity reading in dependence on signals from the receiver coil when the transmitter coil and receiver coil are positioned the predetermined distance above the ground surface in the other of the vertical dipole orientation or horizontal dipole orientation; calculate a correction factor in dependence on the first and second conductivity readings and store the correction factor in the storage element; and determine a plurality of further conductivity readings in dependence on signals from the receiver coil during a site survey, and apply the stored correction factor to the further conductivity readings to produce corrected conductivity readings for the site survey.
摘要:
A combined electromagnetic and magnetometer detection system for detecting objects. The system includes a primary electromagnetic transmitter for generating a primary magnetic field; an electromagnetic sensor for sensing secondary magnetic fields generated by a target region subjected to the primary magnetic field; a magnetometer sensor substantially centered at a center of the primary magnetic field; a compensation transmitter for generating a compensating magnetic field that substantially negates the primary magnetic field across the magnetometer sensor; and a signal generator electrically connected to the primary electromagnetic transmitter and the compensation transmitter for driving the transmitters to generate the primary magnetic field and the compensating magnetic field, respectively.
摘要:
A method for surveying terrain uses transient magnetic fields transmitted from a coil in plane parallel to and above the terrain, transient voltage response from vertically spaced receiver coils coaxial with and parallel to the transmitter coil being processed to detect highly conductive objects buried in the terrain, with the ratio of the response of the coils optionally being used to estimate the depth of objects. The responses from the coils are scaled in a predetermined ratio to provide cancellation of the response from objects in a layer of terrain at a particular depth, which layer may be at the surface to remove surface responses, or beneath the surface so as to allow surface objects to be differentiated from deeper objects by providing responses of opposite polarity.
摘要:
An electromagnetic detection system comprising: a transmitter loop for generating a primary magnetic field, and spaced apart receiver coils for measuring a secondary magnetic field generated in response to the primary magnetic field.
摘要:
A ground conductivity meter that includes a transmitter coil and a receiver coil that are horizontally spaced apart from each other, and a conductivity meter controller connected to the transmitter and receiver coils and including an electronic storage element and at least one processor, the conductivity meter controller being operative to: determine a first conductivity reading in dependence on signals from the receiver coil when the transmitter coil and receiver coil are positioned a predetermined distance above a ground surface in one of a vertical dipole orientation or a horizontal dipole orientation; determine a second conductivity reading in dependence on signals from the receiver coil when the transmitter coil and receiver coil are positioned the predetermined distance above the ground surface in the other of the vertical dipole orientation or horizontal dipole orientation; calculate a correction factor in dependence on the first and second conductivity readings and store the correction factor in the storage element; and determine a plurality of further conductivity readings in dependence on signals from the receiver coil during a site survey, and apply the stored correction factor to the further conductivity readings to produce corrected conductivity readings for the site survey.
摘要:
Apparatus is provided which may be made portable and is calibrated to provide direct readings of terrain conductivity. Transmitter and receiver coils are separated by less than one tenth of the electrical skin depth in terrain having a maximum conductivity to be measured, at the frequency of alternating current signal applied to the transmitter coil, and the signals picked up by the receiver coil are processed to cancel received signal components in phase with the transmitted signal and amplify a received quadrature component so as to provide a direct indication of ground conductivity. The in-phase component received direct from the transmitter coil is cancelled by a preset equal and opposite component, and the in-phase component of the secondary signal received from the terrain is substantially cancelled by a form of negative feedback, in order to avoid swamping of the wanted signal. Optionally, the negative feedback is disabled and the in-phase component is displayed in order to provide an indication of the magnetic susceptibility of the terrain being surveyed.
摘要:
Methods and systems for measuring subsurface electrical conductivity, using first and second sensor coils. The second sensor coil has a smaller effective area and a greater bandwidth than the first sensor coil. The first and second sensor coils are positioned with respect to each other to achieve zero or near zero mutual inductance.