Abstract:
Disclosed is a wind turbine blade and a method for retrofitting a wind turbine blade, the wind turbine blade extending in a longitudinal direction along a pitch axis and having a tip end and a root end as well as a blade length, the wind turbine blade further comprising a profiled contour including a pressure side and a suction side, as well as a leading edge and a trailing edge with a chord having a chord length extending there between, the profiled contour, when being impacted by an incident airflow generating a lift, wherein the suction side of the wind turbine blade is provided with a plurality of vortex generators positioned along a mounting line having a proximal end point nearest the root end and a distal end point nearest the tip end, wherein the mounting line is a concave line seen from the trailing edge of the wind turbine blade.
Abstract:
A wind turbine blade and an associated method of manufacture is described, wherein a structural bond line of the blade is positioned to be adjacent to a sandwich panel construction of the blade. By locating the structural bond line nest to a sandwich region of the blade, the buckling strength of the joint is improved and the risk of crack initiation in the adhesive joint is reduced considerably. This allows for a reduction in the amount of structural adhesive used in the blade, and/or a reduction in the amount of core material which is required in the sandwich panel to maintain the required blade stiffness. A particular advantage is provided in the region of the trailing edge of the blade, wherein the relocated structural joint considerably reduces the risk of buckling in the trailing edge side of the blade.
Abstract:
A vortex generator device (70) for mounting on a wind turbine blade (10) is disclosed. The device comprises: a base (71) having, when mounted on an exterior of the wind turbine blade (10), an inner side (72) for attaching on a surface, such as the exterior of the wind turbine blade (10), and an outer side (73) facing away from the exterior of the wind turbine blade (10). The device is provided with a vane vortex generator pair comprising a first vane (79) and a second vane (80) protruding from the outer side (73) of the base (71). The inner side (72) of the base (71) is provided with a recess (74) or undercut for obtaining an adhesive (81).
Abstract:
A method of retrofitting flow-altering devices to an outer surface of a wind turbine blade is disclosed. The flow-guiding devices are of the type having a base comprising an inner side for attaching onto the surface of the wind turbine blade, and an outer side with protruding flow-altering device parts. The method comprises the steps of: a) inserting the protruding flow-altering device parts into a mounting plate so that the inner side of the flow-guiding devices are exposed from a first side of the mounting plate, b) adhering the inner side of the flow-altering devices to the surface of the wind turbine blade by applying the first side of the mounting plate onto an area of application on the surface of the wind turbine blade, and c) removing the mounting plate from area of application on the surface of the wind turbine blade.
Abstract:
Disclosed is a mould tool for manufacturing a plurality of pre-form laminates for a laminate of a wind turbine blade, the mould tool comprising a frame, a first mould surface configured for receiving a first fabric, a second mould surface configured for receiving a second fabric, and a heating arrangement configured to heat the first mould surface and the second mould surface. The mould tool is configured to turn between a first configuration and a second configuration, wherein in the first configuration the first mould surface is facing substantially upwards, and in the second configuration the second mould surface is facing substantially upwards.
Abstract:
The present disclosure relates to a wind turbine blade, in particular a wind turbine blade having devices or structures for reducing noise generated by the wind turbine blade during use and related method. The wind turbine blade comprises at least a first longitudinal section having a cross section perpendicularly to a longitudinal direction, the cross section having a plurality of flow modulating devices including a first primary flow modulating device and a secondary flow modulating device for modulating noise spectra, wherein the first primary flow modulating device and the first secondary flow modulating device are spaced perpendicularly to the longitudinal direction. Also disclosed is a method of retrofitting a wind turbine blade.