摘要:
In specific embodiments, a vehicle propellable through fluids or along surfaces, comprises a main work section and a plurality of propulsion units for propelling the main work section. The main work section supports one or more payloads. The propulsion units each include a rotor system and a ring-shaped wheel at least partially arranged about the rotor system and rotatable about the rotor system. The ring-shaped wheel is arranged at a banked angle relative to the rotor system.
摘要:
A special purpose processor (SPP) can use a Field Programmable Gate Array (FPGA) or similar programmable device to model a large number of neural elements. The FPGAs can have multiple cores doing presynaptic, postsynaptic, and plasticity calculations in parallel. Each core can implement multiple neural elements of the neural model.
摘要:
A brain-based device (BBD) for moving in a real-world environment has sensors that provide data about the environment, actuators to move the BBD, and a hybrid controller which includes a neural controller having a simulated nervous system being a model of selected areas of the human brain and a non-neural controller based on a computational algorithmic network. The neural controller and non-neural controller interact with one another to control movement of the BBD.
摘要:
In Pavlovian and instrumental conditioning, rewards typically come seconds after reward-triggering actions, creating an explanatory conundrum known as the distal reward problem or the credit assignment problem. How does the brain know what firing patterns of what neurons are responsible for the reward if (1) the firing patterns are no longer there when the reward arrives and (2) most neurons and synapses are active during the waiting period to the reward? A model network and computer simulation of cortical spiking neurons with spike-timing-dependent plasticity (STDP) modulated by dopamine (DA) is disclosed to answer this question. STDP is triggered by nearly-coincident firing patterns of a presynaptic neuron and a postsynaptic neuron on a millisecond time scale, with slow kinetics of subsequent synaptic plasticity being sensitive to changes in the extracellular dopamine DA concentration during the critical period of a few seconds after the nearly-coincident firing patterns. Random neuronal firings during the waiting period leading to the reward do not affect STDP, and hence make the neural network insensitive to this ongoing random firing activity. The importance of precise firing patterns in brain dynamics and the use of a global diffusive reinforcement signal in the form of extracellular dopamine DA can selectively influence the right synapses at the right time.
摘要:
A mobile brain-based device BBD includes a mobile base equipped with sensors and effectors (Neurally Organized Mobile Adaptive Device or NOMAD), which is guided by a simulated nervous system that is an analogue of cortical and sub-cortical areas of the brain required for visual processing, decision-making, reward, and motor responses. These simulated cortical and sub-cortical areas are reentrantly connected and each area contains neuronal units representing both the mean activity level and the relative timing of the activity of groups of neurons. The brain-based device BBD learns to discriminate among multiple objects with shared visual features, and associated “target” objects with innately preferred auditory cues. Globally distributed neuronal circuits that correspond to distinct objects in the visual field of NOMAD 10 are activated. These circuits, which are constrained by a reentrant neuroanatomy and modulated by behavior and synaptic plasticity, result in successful discrimination of objects. The brain-based device BBD is moveable, in a rich real-world environment involving continual changes in the size and location of visual stimuli due to self-generated or autonomous, movement, and shows that reentrant connectivity and dynamic synchronization provide an effective mechanism for binding the features of visual objects so as to reorganize object features such as color, shape and motion while distinguishing distinct objects in the environment.
摘要:
A special purpose processor (SPP) can use a Field Programmable Gate Array (FPGA) to model a large number of neural elements. The FPGAs or similar programmable device can have multiple cores doing presynaptic, postsynaptic, and plasticity calculations in parallel. Each core can implement multiple neural elements of the neural model.
摘要:
A brain-based device (BBD) for moving in a real-world environment has sensors that provide data about the environment, actuators to move the BBD, and a hybrid controller which includes a neural controller having a simulated nervous system being a model of selected areas of the human brain and a non-neural controller based on a computational algorithmic network. The neural controller and non-neural controller interact with one another to control movement of the BBD.
摘要:
A mobile brain-based device BBD includes a mobile base equipped with sensors and effectors (Neurally Organized Mobile Adaptive Device or NOMAD), which is guided by a simulated nervous system that is an analogue of cortical and sub-cortical areas of the brain required for visual processing, decision-making, reward, and motor responses. The brain-based device BBD learns to discriminate among multiple objects with shared visual features, and associated “target” objects with innately preferred auditory cues. The brain-based device BBD is moveable, in a rich real-world environment involving continual changes in the size and location of visual stimuli due to self-generated or autonomous, movement, and shows that reentrant connectivity and dynamic synchronization provide an effective mechanism for binding the features of visual objects so as to reorganize object features such as color, shape and motion while distinguishing distinct objects in the environment.
摘要:
A mobile brain-based device (BBD) includes a mobile platform with sensors and effectors, which is guided by a simulated nervous system that is an analogue of the cerebellar areas of the brain used for predictive motor control to determine interaction with a real-world environment. The simulated nervous system has neural areas including precerebellum nuclei (PN), Purkinje cells (PC), deep cerebellar nuclei (DCN) and an inferior olive (IO) for predicting turn and velocity control of the BBD during movement in a real-world environment. The BBD undergoes training and testing, and the simulated nervous system learns and performs control functions, based on a delayed eligibility trace learning rule.
摘要:
A mobile brain-based device (BBD) includes a mobile platform with sensors and effectors, which is guided by a simulated nervous system that is an analogue of the cerebellar areas of the brain used for predictive motor control to determine interaction with a real-world environment. The simulated nervous system has neural areas including precerebellum nuclei (PN), Purkinje cells (PC), deep cerebellar nuclei (DCN) and an inferior olive (IO) for predicting turn and velocity control of the BBD during movement in a real-world environment. The BBD undergoes training and testing, and the simulated nervous system learns and performs control functions, based on a delayed eligibility trace learning rule.