摘要:
A special purpose processor (SPP) can use a Field Programmable Gate Array (FPGA) to model a large number of neural elements. The FPGAs or similar programmable device can have multiple cores doing presynaptic, postsynaptic, and plasticity calculations in parallel. Each core can implement multiple neural elements of the neural model.
摘要:
A special purpose processor (SPP) can use a Field Programmable Gate Array (FPGA) to model a large number of neural elements. The FPGAs or similar programmable device can have multiple cores doing presynaptic, postsynaptic, and plasticity calculations in parallel. Each core can implement multiple neural elements of the neural model.
摘要:
A special purpose processor (SPP) can use a Field Programmable Gate Array (FPGA) to model a large number of neural elements. The FPGAs or similar programmable device can have multiple cores doing presynaptic, postsynaptic, and plasticity calculations in parallel. Each core can implement multiple neural elements of the neural model.
摘要:
A special purpose processor (SPP) can use a Field Programmable Gate Array (FPGA) to model a large number of neural elements. The FPGAs or similar programmable device can have multiple cores doing presynaptic, postsynaptic, and plasticity calculations in parallel. Each core can implement multiple neural elements of the neural model.
摘要:
A special purpose processor (SPP) can use a Field Programmable Gate Array (FPGA) to model a large number of neural elements. The FPGAs or similar programmable device can have multiple cores doing presynaptic, postsynaptic, and plasticity calculations in parallel. Each core can implement multiple neural elements of the neural model.
摘要:
A reliable, pulse-flow supplemental oxygen apparatus for alleviating respiratory ailments is provided which yields substantial savings in oxygen while giving the patient the physiological equivalent of a prescribed continuous stream of oxygen. The apparatus preferably includes a demand oxygen valve operated in a pulse mode by means of electronic control circuitry which, through an appropriate sensor, monitors the patient's breathing efforts and gives a variable "custom tailored" pulse volume of oxygen to the patient during the very initial stages of each inspiration. Pulse volume variability is based upon a measured parameter characterizing at least a part of one and preferably a plurality of the patient's preceeding breaths; advantageously, the elapsed time interval of the patient's three preceding breath cycles is measured to effectively measure breath rate. These breath-characterizing parameters, together with data characterizing the prescribed continuous oxygen flow to be matched, enable the apparatus to give the desired "on the go" dose variability. The apparatus is also designed to revert to conventional, continuous-flow operation upon a power failure or circuit malfunction.
摘要:
A special purpose processor (SPP) can use a Field Programmable Gate Array (FPGA) or similar programmable device to model a large number of neural elements. The FPGAs can have multiple cores doing presynaptic, postsynaptic, and plasticity calculations in parallel. Each core can implement multiple neural elements of the neural model.
摘要:
An apparatus and method for facilitating the respiration of a patient are disclosed which are particularly useful in treating mixed and obstructive sleep apnea and certain cardiovascular conditions, among others, by increasing nasal air pressure delivered to the patient's respiratory passages just prior to inhalation and by subsequently decreasing the pressure to ease exhalation effort. The preferred apparatus includes a patient-coupled gas delivery device for pressurizing the patient's nasal passages at a controllable pressure, and a controller coupled with the delivery device having a pressure transducer for monitoring the nasal pressure and a microcontroller for selectively controlling the nasal pressure. In operation, the controller determines a point in the patient breathing cycle just prior to inhalation and initiates an increase in nasal pressure at that point in order to stimulate normal inhalation, and subsequently lowers the nasal pressure to ease exhalation efforts. The invention further comprises an apparatus for compensating variances in a circuit used for supplying airway pressure to a patient's airway having a sensor proximal to a pneumatic circuit connection for ascertaining a circuit characteristic and producing a signal value representative thereof, as well as a memory storing a look-up table containing empirical values corresponding to known variances of pneumatic circuit connections and signal processor receiving and comparing the signal value with the empirical values to ascertain a deviation value, and a controller connected to the signal processor and source of breathing gas to control delivery of breathing gas in accordance with the deviation value an apparatus for compensating variances in a circuit used for supplying airway pressure to a patient's airway having a sensor proximal to a pneumatic circuit connection for ascertaining a circuit characteristic and producing a signal value representative thereof, as well as a memory storing a look-up table containing empirical values corresponding to known variances of pneumatic circuit connections and signal processor receiving and comparing the signal value with the empirical values to ascertain a deviation value, and a controller connected to the signal processor and source of breathing gas to control delivery of breathing gas in accordance with the deviation value.
摘要:
A reliable, pulse-flow supplemental oxygen apparatus for alleviating respiratory ailments is provided which yields substantial savings in oxygen while giving the patient the physiological equivalent of a prescribed continuous stream of oxygen. The apparatus preferably includes a demand oxygen valve operated in a pulse mode by means of electronic control circuitry which, through an appropriate sensor, monitors the patient's breathing efforts and gives a variable "custom tailored" pulse volume of oxygen to the patient during the very initial stages of each inspiration. Pulse volume variability is based upon a measured parameter characterizing at least a part of one and preferably a plurality of the patient's preceding breaths; advantageously, the elapsed time interval of the patient's three preceding breath cycles is measured to effectively measure breath rate. These breath-characterizing parameters, together with data characterizing the prescribed continuous oxygen flow to be matched, enable the apparatus to give the desired "on the go" dose variability. The apparatus is also designed to revert to conventional, continuous-flow operation upon a power failure or circuit malfunction, and for this purpose a specialized dual flow control restrictor valve is provided in the form of the invention designed for hospital use. In the event of abnormally low or high breath rates on the part of the patient, the device automatically delivers a relatively long continuous pulse, then stops to again sample the breath rate. If the rate is normal, the usual pulse flow operation is resumed; if the rate remains abnormal, the long pulse volume-rate sampling is repeated. Actual tests with the apparatus hereof demonstrate an oxygen saving of over 50% as compared with continuous flow regimens.
摘要:
A special purpose processor (SPP) for implementing a synthetic neural model of the biological anatomy of the human brain to control a brain-based device (BBD) that is movable in a real-world environment, including neural processing units (NPUs), each having a programmed processor and a local memory that stores data records of neural elements, a system memory for storing data about all the NPUs, and a finite state machine and a system bus for transferring data between the NPUs and system memory.