Abstract:
A measuring device is provided which, in order to measure measured variables of an object being measured, can be placed on a surface of the object being measured. The surface supports the measuring device. The measuring device comprises at least three projecting contact surfaces, the center points of which are distributed substantially uniformly along a circle. The projecting contact surfaces, when the measuring device is placed on the surface of an object being measured, lie against the surface and are supported by the surface. A first of the contact surfaces comprises a temperature sensor for measuring the surface temperature of the object being measured, while a second and a third of the contact surfaces are provided to measure respective other measured variables.
Abstract:
The system for mounting a vibration transducer at a machine includes a mounting pad made from ferrous magnetic material and configured to be mounted at a measurement location of the machine; and a magnetic base comprising a transducer fixation structure configured to releasably fix a vibration transducer unit at the magnet base and a pad engagement structure configured to releasably engage with a mating engagement structure of the mounting pad so as to magnetically fix the magnet base at the mounting pad for vibration measurement. The engagement structure of the mounting pad includes at least one groove and is asymmetric in a direction orthogonal to the longitudinal direction of the at least one groove in such a manner that engagement of the engagement structure of the mounting pad to ensure proper orientation of the transducer unit with regard to the machine.
Abstract:
The invention relates to a system and to a method for determining the displacement of two bodies relative to each other, wherein the system comprises a first camera, a second camera, a first lamp, and a second lamp, wherein both the first camera and the second camera comprise an objective and an image sensor having a sensor surface.
Abstract:
A device for determining the position of a first mechanical element relative to a second mechanical element, having a first measurement unit for attachment to the first mechanical element, a second measurement unit for attachment to the second mechanical element, and an evaluation unit. The first measurement unit emits spectrally differing first and second light beams in essentially the same direction and a position-sensitive optical detector. The second measurement unit has a reflector arrangement facing the first measurement unit, in order to reflect the first and second light beams onto the detector. Surfaces facing the first measurement unit being color splitters having different reflectivity/transmissibility for the first light beam and the second light beam. The evaluation unit determines the location of the first and second mechanical elements relative to one another from the incidence positions of the reflected first and second light beams on the detector.
Abstract:
A vibration-resistant wind turbine and process for operation is provided. The wind turbine has a rotor with at least two blades, each of which includes an inclinometer arrangement with at least two axes, and an evaluating unit. The evaluating unit determines the bending and/or twisting of the blade relative to the longitudinal axis of the blade on the basis of signals from the inclinometer arrangement for each blade during operation. Each rotor blade further has at least one liquid tank which is capable of receiving or transferring liquid from or to a liquid reservoir via a transfer mechanism in response to the determined bending and/or twisting of the rotor blades to reduce vibration caused by imbalances, thereby extending the service life of the wind turbine.
Abstract:
A device for quantitative assessment of the orientation of two machines relative to one another has auxiliary devices in the form of extenders or holding devices (40, 50) on which displacement and/or mounting of light transmitting or receiving devices (44, 52) are mountable in a manner that makes the use of a precision pivot bearing unnecessary.
Abstract:
The invention relates to an apparatus for vibration measurement on a machine, having a base plate for mounting on a measurement point of the machine, a magnetic retaining device for holding the base plate at the measurement point by magnetic force, a sensor for detecting vibrations, arranged on or in contact with the base plate, a sensor for detecting the magnetic flux density in the area of the retaining device, and a monitoring device for monitoring the coupling of the base plate to the measurement point by evaluating the detected magnetic flux density.
Abstract:
The method provides determining at least one speed of a machine, wherein, on the basis of the measurement of a vibration variable carried out on the machine over time, the complex spectrum of this variable is determined, wherein a frequency interpolation is carried out; boundary conditions are established for the evaluation of the spectrum, which include the permissible frequency range of an expected main speed, a set of relative frequencies with respect to the main speed in the form of frequency multipliers, and a weighting factor for the particular relative frequency; a spectral probability density is calculated with consideration for the boundary conditions, which results for each frequency of the permissible frequency range as a sum of the amplitude of the spectrum, which has been weighted with the particular weighting factor and the main speed is determined on the basis of the frequency having the maximum probability density.
Abstract:
Method for monitoring of a wind power plant operated in variable operating states. Start sensor data is obtained in at least one basic operating state of the machine; based on the start sensor data, a starting model with a rule set for conducting the monitoring is set up, the rule set determining which parameters are to be monitored, in which manner and with which weighting and which sensor data are to be obtained and used for this purpose; a reference SOM is prepared using the rule set with sensor data selected using the rule set and obtained in a reference operating phase of the machine; during a monitoring operating phase, time characteristics of a quantization error of the sensor data selected using the rule set being tracked with respect to the reference SOM, troubleshooting being started if the quantization error meets a criterion which is dictated by the rule set.
Abstract:
A device for machine diagnostics, with a vibration sensor (12) for detecting vibration signals on the machine (10), a unit (14) for conditioning the vibration signals, an A/D converter (16) for digitizing the conditioned vibration signals, a data processing unit (20) for splitting the digital signals into at least two frequency ranges, the data processing unit being made to scale the signal for each frequency range to an amplitude resolution which is less than the amplitude resolution of the A/D converter, and an evaluation unit (30) for further evaluation of the split signals.