Abstract:
Provided is a lithium-ion secondary batteries including lithium vanadium fluorophosphate (e.g., LiVPO4F and its derivatives) and/or a mix containing LVPF as a positive electrode active material and an electrolytic solution including tris(trimethylsilyl)phosphate (TTSP) to reduce cycle capacity loss.
Abstract:
Provided is a positive electrode active material for a lithium-ion battery, the positive electrode active material including a blend of a doped lithium manganese iron phosphate (dLMFP) according to the formula: LiMnxFeyM1−x−yPO4, wherein 0.9 70:
Abstract:
Provided is pouch battery including an electrode assembly, and a case in which the electrode assembly is sealed and housed; the electrode assembly including a stacked structure of a sheet cathode, a sheet separator, and a sheet anode; the sheet cathode including a positive electrode active material disposed on a current collector; the sheet anode is thin conductive sheet on which lithium metal reversibly deposits on a surface thereof during discharging; the sheet anode being made of a conductive material other than lithium and having a surface substantially free from lithium metal prior to charging the battery. The pouch battery design is flexible and lightweight and provides high power density, making it a suitable replacement for conventional lithium-ion primary batteries and thermal batteries in many applications. Power can be further increased by the application of external compression. Additives and formation conditions can be tailored for forming a solid-electrolyte interface (SEI).
Abstract:
Provided is a battery that may include a first terminal or cable, a second terminal or a cable, a thermal fuse configured to connect to the first terminal or cable and the second terminal or cable, a first sleeving layer that is disposed on the thermal fuse, and that is configured to muffle an arc explosion of the thermal fuse and encapsulate molten material generated by the arc explosion of the thermal fuse, and a second sleeving layer that is disposed on the first sleeving layer, and that is configured to encapsulate the molten material generated by the arc explosion of the thermal fuse that penetrates the first sleeving layer. An overcurrent protection system and a sleeving are also provided.
Abstract:
A power electronics assembly may include a power component having a thermally and electrically conductive surface; a printed circuit board having a slot; and a bussing element having a protrusion that directly contacts the thermally and electrically conductive surface of the power component via the slot of the printed circuit board, the printed circuit board being disposed between the power component and the bussing element.
Abstract:
Provided are battery modules having two different types electrochemistry connected in series, which includes a plurality of a first cell, wherein the first cell includes an anode active material of graphite, Si, SiOx, or a blend thereof as a main component (“a GSi cell”), and at least one of a second cell, wherein the second cell includes an anode active material of a lithium titanate oxide or titanate oxide able to be lithiated as a main component (“a LTO cell”). Also provided are battery systems that include a plurality of the battery modules.
Abstract:
The present invention is notably directed to methods and systems for protecting a pre-charge circuit. The present invention is further directed to related computer-implemented program product. The method comprises monitoring the current flowing through the current limiting device, calculating the energy loading of the current limiting device over time, and managing the system state to prevent damaging operation of the pre-charge circuit.
Abstract:
A separator system for a LiAl/FeS.sub.x electrochemical cell includes microporous sintered metal particle retainer screens fabricated by cold compacting, tape casting or plasma spraying, followed by sintering. The separator may consist of Al.sub.2 O.sub.3 or MgO powder, AlN microporous particles, AlN microporous disk or ceramic standoff sandwiched between two screens or Al.sub.2 O.sub.3 or MgO powder plasma sprayed onto one screen surface. The various separator system combinations are impregnated with 20% to 50% by volume electrolyte salt for ionic conductivity. Pore size is less than 10 .mu.m, excluding electrode particles from reaching the separator.
Abstract translation:用于LiAl / FeSx电化学电池的分离器系统包括通过冷压缩,带铸或等离子喷涂制造的微孔烧结金属颗粒保持器筛网,随后烧结。 分离器可以由Al 2 O 3或MgO粉末,AlN微孔颗粒,AlN微孔盘或夹在两个筛网之间的陶瓷支座或Al2O3或MgO粉末等离子体喷射到一个屏幕表面上。 各种分离器系统组合用20体积%至50体积%的电解质盐浸渍,用于离子导电性。 孔径小于10微米,不包括电极颗粒到达隔膜。
Abstract:
A small to miniature pressurized secondary cell of planar configuration has a case comprising a generally cylindrical sidewall open at one end and closed at the other end by a circular end wall. The open end of the case is closed by a cover which includes a positive terminal electrically isolated from the case. A plurality of substantially rectangular positive and negative stacked electrode plates with interleaved separator components are supported within the cell to define chordal volumes between the stacked electrode plates and the cylindrical sidewall of the cell sufficient to establish equilibrium gas pressures within the cell. The positive electrode plates are connected to the positive terminal and the negative electrode plates are electrically grounded to the case. Compressible electrolyte reservoir plates can also be provided at one or both ends of the stacked electrode plates to provide additional electrolyte during the service life of the cell and to absorb expansion of the electrode stack.
Abstract:
A battery including a housing, a plurality of battery cells in the housing, and a spring plate providing a biasing force against the plurality of battery cells. The spring plate is configured such that a tension of the spring plate may be adjusted from outside of the housing.