Abstract:
Provided is a composition which can be utilized for drug delivery systems that can penetrate the blood brain barrier, and has low cytotoxicity. A nanoparticle composition comprises nanoparticles to the surface of which a first substance and a second substance each having specificity to a tumor cell are bound, wherein the first substance having specificity to the tumor cell is a peptide comprising an amino acid sequence of arginine-glycine-aspartic acid, and wherein the second substance having specificity to the tumor cell is an iron-binding protein, and wherein the nanoparticles each comprise an outer layer and vesicles enveloped by the outer layer and the nanoparticles each comprise, as membrane components, a PEGylated phospholipid, a fatty acid with a melting point of 30° C. or more, and a non-PEGylated phospholipid.
Abstract:
A motor performance evaluation apparatus 100 for evaluating motor performance of a subject, including: an acquisition unit 131 configured to acquire drawing stroke information including position information and time information on drawing stroke of the subject copying a predetermined single-stroke drawn figure; a detection unit 132 configured to detect a fall count indicating the number of times a drawing acceleration of the subject changes from a positive value to a negative value, based on the drawing stroke information; and an evaluation unit 133 configured to evaluate the motor performance of the subject, based on the fall count.
Abstract:
A novel technical method, which can realize carbon dioxide reduction, which is a task to be urgently accomplished from the viewpoint of global environmental problems, can realize carbon dioxide decomposition for the carbon dioxide reduction, and can realize the utilization of carbon resources obtained from the carbon dioxide with a higher added value, is provided by irradiating carbon dioxide in a supercritical or subcritical state with a UV-wavelength laser beam to decompose carbon dioxide and form a carbon-particle structure.
Abstract:
An organic thin film transistor includes an organic semiconductor layer, a source electrode and a drain electrode which are separated from each other and are individually in contact with the organic semiconductor layer, a gate insulating film which is in contact with the organic semiconductor layer between the source and drain electrodes, and a gate electrode which is opposed to the organic semiconductor layer and is in contact with the gate insulating film. In the organic thin film transistor, a high-concentration region of the organic semiconductor layer which is located near the source electrode has an impurity concentration set higher than an impurity concentration of a low-concentration region of the organic semiconductor layer, the low-concentration region being located near the gate electrode in the thickness direction of the organic semiconductor layer between the source and drain electrodes.
Abstract:
With proposed radiation thermometry and radiation thermometry system (10), a thin-film (2) is disposed on a substrate to make a thin-film substrate, and measurement is conducted for polarized radiance components emitted from the thin-film (2) in a direction which is within an angle range θ eic, from a planar normal line of the thin-film (2), where radiance components remain invariable. A temperature of the thin-film (2) is determined on the basis of the measured results of the polarized radiance components. The polarized radiance components are measured using a radiometer (4) by measuring p-wave polarized radiance components which are parallel to an emitting surface including a direction where the polarized radiance components are measured. A pseudo-blackbody (5) is disposed in a mirror symmetrical state to the radiometer (4), and absorbs and negates background radiations to the radiometer (4). Further, temperatures of the pseudo-blackbody (5) are measured, and will be made allowance for calculation of temperatures of the thin-film (2).
Abstract:
A method for realizing carbon dioxide reduction, which is a task to be urgently accomplished from the viewpoint of global environmental problems, is provided. The method includes the steps of irradiating carbon dioxide in a supercritical or subcritical state (i.e., near the critical point) with a UV-wavelength laser beam to decompose carbon dioxide and form a carbon-particle structure.
Abstract:
The present invention relates to a novel electrode material for fuel cells, and more particularly, to an electrode material for fuel cells, the electrode material comprising carbon fibers, in which the carbon fibers are carbon fibers covered with fibrous nanocarbon that supports a catalyst metal.
Abstract:
Provided is a fuel cell catalyst composition comprising a C12A7:X− inorganic material having a structure in which oxygen anions of C12A7 are replaced by halogen (X) anions, or comprising a C12A7:X−-based inorganic material which is a C12A7:X− partially converted to electride. A fuel cell comprising the fuel cell catalyst composition in a catalyst layer is also provided. Also provided is a method of producing a fuel cell catalyst composition, comprising a step of heat-treating C12A7:X− at temperature of 1000-1300° C. for at least 20 hours under a nitrogen atmosphere.
Abstract:
[Problem] A carrier for retaining anammox bacteria, an anammox bacteria-adhered particle, and a wastewater treatment apparatus are provided that can remarkably reduce the start-up period for obtaining a nitrogen removal speed of 1 kg-N/m3/day. [Solution] A carrier for retaining anammox bacteria includes carbon particles. The carbon particles are desirably graphite particles, particularly isotropic graphite particles. The carbon particles desirably have a zeta potential of −35 mV to 0 mV and an average particle size of 2 μm to 1000 μm.
Abstract:
Provided is a method for treating a living body using an electrical stimulator including a base wire having a core wire and an outer winding wire wound around the core wire. An annulus is formed by winding the base wire in a loop shape. A first end of the core wire is electrically connected to a first end of the outer winding wire. A second end of the core wire is connected to a first terminal of an external circuit. A second end of the outer winding wire is connected to a second terminal of the external circuit. The method includes holding the living body or a part of the living body of a subject in the annulus and generating an alternating current in the external circuit for a therapeutically effective time period to apply an electrical stimulation to the living body or the part of the living body.