Abstract:
A peak current modeling method and system for modeling peak current demand of an integrated circuit (IC) block such as, e.g., a compilable memory instance. A current demand curve associated with the IC for a particular IC block event is obtained via simulation, for example. A defined time region associated with the particular IC block event is divided into multiple time segments, whereupon at least a first current value and a second current value for each time segment is obtained based on the current demand curve. Thereafter, the current demand curve is approximated, on a segment-by-segment basis, using a select approximate waveform depending on a relationship between the first and second current values.
Abstract:
A Static Random Access Memory (SRAM) cell having a source-biasing mechanism for leakage reduction. In standby mode, the cell's wordline is deselected and a source-biasing potential is provided to the cell. In read mode, the wordline is selected and responsive thereto, the source-biasing potential provided to the cell is deactivated. Upon completion of reading, the source-biasing potential is re-activated.
Abstract:
A compact, shared source line and bit line architecture for a diffusion programmable ROM. In one embodiment, a ROM circuit or instance includes a plurality of storage cells organized as an array of rows columns. A shared source line is associated with a first pair of adjacent columns, the shared source line being maintained at a predetermined level, wherein source terminals of storage cells in the adjacent columns are electrically coupled to the shared source line. A shared bit line is associated with a second pair of adjacent columns, the shared bit line being maintained at the predetermined level, wherein drain terminals of storage cells in the adjacent columns are electrically coupled to the shared bit line.
Abstract:
A method and apparatus for testing a memory at speed. A test and repair wrapper integrated with a memory instance is operable to receive test information scanned in from a built-in self-test and repair (BISTR) processor. Logic circuitry associated with the test and repair wrapper is operable to generate address, data and command signals based on the scanned test information, wherein the signals are used for effectuating one or more tests with respect to the memory instance.
Abstract:
A method and system for repairing a memory. A test and repair wrapper is operable to be integrated with input/output (I/O) circuitry of a memory instance to form a wrapper I/O (WIO) block that is operable to receive test and repair information from a built-in self-test and repair (BISTR) processor. Logic circuitry associated with the WIO block is operable generate a current error signal that is used locally by the BISTR processor for providing a repair enable control signal in order to repair a faulty memory portion using a redundant memory portion without having to access a post-processing environment for repair signature generation.
Abstract:
A compact, shared source line and bit line architecture for a diffusion programmable ROM. In one embodiment, a ROM circuit or instance includes a plurality of storage cells organized as an array of rows columns. A shared source line is associated with a first pair of adjacent columns, the shared source line being maintained at a predetermined level, wherein source terminals of storage cells in the adjacent columns are electrically coupled to the shared source line. A shared bit line is associated with a second pair of adjacent columns, the shared bit line being maintained at the predetermined level, wherein drain terminals of storage cells in the adjacent columns are electrically coupled to the shared bit line.
Abstract:
A method and system for repairing a memory. A test and repair wrapper is operable to be integrated with input/output (I/O) circuitry of a memory instance to form a wrapper I/O (WIO) block that is operable to receive test and repair information from a built-in self-test and repair (BISTR) processor. Logic circuitry associated with the WIO block is operable generate a current error signal that is used locally by the BISTR processor for providing a repair enable control signal in order to repair a faulty memory portion using a redundant memory portion without having to access a post-processing environment for repair signature generation.
Abstract:
A partitioned source line architecture for reducing leakage and power in a ROM. In one embodiment, a ROM is comprised of a plurality of storage cells organized as an array having M rows and N columns. Each column is associated with a precharged source line that is partitioned into a plurality of source line segments based on the number of row banks of the array. A plurality of local source line decoder circuits corresponding to the row banks are provided for decoding a selected source line segment based on the column address as well as a Bank Select signal generated from the row address of a particular cell. Local pull-down circuitry is provided with each bank for deactivating the selected source line segment upon commencing a memory access operation.
Abstract:
An embedded test and repair (ETR) scheme and interface for generating a self-test-and-repair (STAR) memory device using an integrated design environment. User interface and supporting program code is operable to provide a dialog box for defining a memory group that includes one or more memory instances, each having corresponding fuse element requirements based on its configuration data. BIST elements and a processor compiler for providing ETR functionality are also specified via suitable portions of the integrated GUI. A fuse equation is employed for computing the number of fuses for each memory instance, which equation is derived based on the memory configuration. Fuse information for each memory instance is automatically passed to a fuse compiler that generates a fuse box having an appropriate number of fuses that can accommodate the fuse requirements of the memory instances of the group.
Abstract:
A source-biasing mechanism for leakage reduction in SRAM. In standby mode, wordlines are deselected and a source-biasing potential is provided to SRAM cells. In read mode, a selected wordline deactivates the source-biasing potential provided to the selected row of SRAM cells, whereas the remaining SRAM cells on the selected bitline column continue to be source-biased.