摘要:
The present invention embodiments consolidate process control for a process including a plurality of control threads each associated with a stage of the process. A plurality of the control threads are analyzed to enable the process control with a reduced quantity of the control threads. Data associated with the plurality of control threads are validated and provided in a desired form. At least one parameter of each of the plurality of control threads is statistically analyzed to form at least one thread group including a plurality of the control threads satisfying the parameter analysis. Each thread group functions as a common thread to enable the process control with a reduced quantity of control threads. The present invention embodiments further include a method and program product apparatus for consolidating the process control.
摘要:
A semiconductor manufacture and testing device is provided, comprising: a process device configured to perform a semiconductor processing operation on a semiconductor wafer; a testing device configured to perform a testing operation on the semiconductor wafer and generate real-time testing metrics relating to the testing operation; a data storage element configured to store the real-time testing metrics as stored testing metrics; a control and dispatch element configured to receive the stored testing metrics and generate dispatch control signals based on the stored testing metrics and a set of evaluation rules; and a test routing element located between the process element and the testing element, and configured to route the semiconductor wafer either from the process element to the testing element or from the process element around the testing element, based the dispatch control signals.
摘要:
The disclosed system and method relates to the prediction of processing tool control parameters, i.e. controller state, for a particular processing tool, which has little or no utilization history, i.e. is data starved or has not gone through the learning curve, for a given process, or has undergone an event for which the current controller state has been reset or is otherwise now sub-optimal. The prediction is based on the processing tool control parameters of a substantially similar processing tool, being used in a substantially similar fashion to the given situation, which has significant utilization history. The processing tool having significant utilization history may be the same processing tool as the processing tool with little or no processing history where a manufacturing event disrupts the operations thereof. In this case, the pre-event control parameters and utilization history may be used, according to the disclosed embodiments, to predict the post-event controller state. Effectively, the disclosed embodiments provide for the processing tool with little or no utilization history to inherit the controller state, i.e. the evolved control parameters, of the processing tool with significant utilization history. Thereby, the processing tool with little or no utilization history is spared having to go through the learning curve, and the associated costs in delay and resources, to arrive at a particular controller state, i.e. the processing tool does not have to go through the iterative process-evaluate-adapt procedure to refine its control parameters to achieve results within the desired specifications.
摘要:
The disclosed system and method relates to the prediction of processing tool control parameters, i.e. controller state, for a particular processing tool, which has little or no utilization history, i.e. is data starved or has not gone through the learning curve, for a given process, or has undergone an event for which the current controller state has been reset or is otherwise now sub-optimal. The prediction is based on the processing tool control parameters of a substantially similar processing tool, being used in a substantially similar fashion to the given situation, which has significant utilization history. The processing tool having significant utilization history may be the same processing tool as the processing tool with little or no processing history where a manufacturing event disrupts the operations thereof. In this case, the pre-event control parameters and utilization history may be used, according to the disclosed embodiments, to predict the post-event controller state. Effectively, the disclosed embodiments provide for the processing tool with little or no utilization history to inherit the controller state, i.e. the evolved control parameters, of the processing tool with significant utilization history. Thereby, the processing tool with little or no utilization history is spared having to go through the learning curve, and the associated costs in delay and resources, to arrive at a particular controller state, i.e. the processing tool does not have to go through the iterative process-evaluate-adapt procedure to refine its control parameters to achieve results within the desired specifications.