Abstract:
A protective cover for a filler neck is designed to discriminate between different sizes of fuel nozzles. The cover includes a body portion and a movable door that covers and exposes an opening in the filler neck. The body portion has a pair of spaced body protrusions that form a gate, and the door has a ledge that may also be formed by a pair of spaced door protrusions. The protrusions on the door can be easily moved to an open position by pressing a tip of a fuel nozzle against the protrusions. The gate and the ledge are configured so that they can accommodate the fuel nozzle for only one type of fuel.
Abstract:
A protective cover for a filler neck is designed to discriminate between different sizes of fuel nozzles. The cover includes a body portion and a movable door that covers and exposes an opening in the filler neck. The body portion has a pair of spaced body protrusions that form a gate, and the door has a ledge that may also be formed by a pair of spaced door protrusions. The protrusions on the door can be easily moved to an open position by pressing a tip of a fuel nozzle against the protrusions. The gate and the ledge are configured so that they can accommodate the fuel nozzle for only one type of fuel.
Abstract:
A method for producing a metal article may include: Producing a supply of a composite metal powder by: providing a supply of molybdenum metal powder; providing a supply of a sodium compound; combining the molybdenum metal powder and the sodium compound with a liquid to form a slurry; feeding the slurry into a stream of hot gas; and recovering the composite metal powder; and consolidating the composite metal powder to form the metal article, the metal article comprising a sodium/molybdenum metal matrix. Also disclosed is a metal article produced accordance with this method.
Abstract:
A furnace having sidewalls to form an enclosure to contain a melt. One or more burners are positioned to fire into the enclosure to maintain the melt and one or more charge wells are separated from the enclosure by the sidewalls. A charge of material to be melted is loaded into the charge wells and melted. Submerged openings defined in the sidewall circulate melt to the charge well(s) and to circulate the melt back to the enclosure. Submerged pumps effectuate the circulation. Flue gas openings defined in the sidewall(s) are configured to direct flue gas into the charge well(s) and on to said the charge of material. Two opposed charge wells and pumps may be provided as wells as flue gas openings to heat the charge of material deposited into the charge wells. The flue gas openings allow flue gas to impinge onto the charge of material to be melted so that heat that would otherwise be lost in the flue gas is used to help melt the charge of material.
Abstract:
A method for producing a metal article may include: Producing a supply of a composite metal powder by: providing a supply of molybdenum metal powder; providing a supply of a sodium compound; combining the molybdenum metal powder and the sodium compound with a liquid to form a slurry; feeding the slurry into a stream of hot gas; and recovering the composite metal powder; and consolidating the composite metal powder to form the metal article, the metal article comprising a sodium/molybdenum metal matrix. Also disclosed is a metal article produced accordance with this method.
Abstract:
A method for producing a composite metal powder according to one embodiment of the invention may comprise: Providing a supply of molybdenum metal powder; providing a supply of a sodium compound; combining the molybdenum metal powder and the sodium compound with a liquid to form a slurry; feeding the slurry into a stream of hot gas; and recovering the composite metal powder.