Abstract:
An injection molding method and system for an electrical circuit utilized in vehicle door latch mechanisms is disclosed herein. A mold is generally provided in which a mold cavity is formed therein from walls of the mold. An electrical circuit associated with vehicle door latch and/or integrated with the vehicle door latch can be located within the mold cavity. A plastics material can then be injection molded into the mold cavity of the mold, wherein the plastics material covers and seals the electrical circuit to provide insulation and environmental protection to the electrical circuit.
Abstract:
Methods and systems for magnetically actuating latch components are disclosed herein. A door latch assembly comprising at least one latching mechanism can be provided for maintaining a door in a locked condition or an unlocked condition. One or more electromagnets can be integrated with the door latch assembly, such that the electromagnet generates one or more pulses in the form of electrical energy that can actuate the latching mechanism from a locked condition to an unlocked condition and vice versa. A pulsed electromagnet is therefore utilized such each pulse of energy applied actuates the latching mechanism a known amount. Such a configuration permits the latching mechanism to be accurately indexed from a known position to another.
Abstract:
Latching systems and methods are disclosed herein. A latch mechanism includes one or more sealed areas and one or more unsealed areas thereof. Also, a magnetic coupling mechanism is provided for coupling motion between the sealed area and the unsealed area and vice versa. The magnetic coupling mechanism can be configured to include a permanent magnet which generates a magnetic field for coupling the motion from the unsealed area to the sealed area and vice versa. The magnetic coupling mechanism can also be configured to include an electromagnet for generating a magnetic field for coupling thereof.