Abstract:
A method and system for permitting host write operations in one part of a flash memory concurrently with another operation in a second part of the flash memory is disclosed. The method includes receiving data at a front end of a memory system, selecting at least one of a plurality of subarrays in the memory system for executing a host write operation, and selecting at least one other subarray in which to execute a second operation. The write operation and second operation are then executed substantially concurrently. The memory system includes a plurality of subarrays, each associated with a separate subarray controller, and a front end controller adapted to select and initiate concurrent operations in the subarrays.
Abstract:
Files that are mapped to a logical address range by a host become logically fragmented prior to being sent to a memory system. Subsequently, the logically fragmented portions are reassembled when they are stored in blocks in the memory system. The host supplies information to the memory system regarding file-to-logical mapping of data prior to sending the data. The memory selects storage locations for the data based on the files to which the data belong.
Abstract:
A change in the amount of data to be stored that results from various encoding, compression, encryption or other data transformation algorithms, is handled by individually identifying distinct units of the transformed data and storing such units in physical succession within storage blocks of a memory system such as flash memory. The data being stored may come from a host system external to the memory system or from an application running on a processor within the memory system.
Abstract:
Host system data files are written directly to a large erase block flash memory system with a unique identification of each file and offsets of data within the file but without the use of any intermediate logical addresses or a virtual address space for the memory. Directory information of where the files are stored in the memory is maintained within the memory system by its controller, rather than by the host.
Abstract:
A memory system that is compatible with hosts using different protocols includes protocol adapters for the different protocols. Protocol adapters allow a common backend system to be used for data that is provided in different formats. A protocol adapter generates responses to a host and generates commands for a backend as appropriate.
Abstract:
A data storage device is provided. A disk device is combined with a non-volatile memory device to provide much shorter write access time and much higher data write speed than can be achieved with a disk device alone. Interleaving bursts of sector writes between the two storage devices can effectively eliminate the effect of the seek time of the disk device. Following a non-contiguous logical address transition from a host system, the storage controller can perform a look-ahead seek operation on the disk device, while writing current data to the non-volatile memory device. Such a system can exploit the inherently faster write access characteristics of a non-volatile memory device, eliminating the dead time normally caused by the disk seek time.
Abstract:
Host system data files are written directly to a large erase block flash memory system with a unique identification of each file and offsets of data within the file but without the use of any intermediate logical addresses or a virtual address space for the memory. Directory information of where the files are stored in the memory is maintained within the memory system by its controller, rather than by the host. The file based interface between the host and memory systems allows the memory system controller to utilize the data storage blocks within the memory with increased efficiency.
Abstract:
Host system data files are written directly to a large erase block flash memory system with a unique identification of each file and offsets of data within the file but without the use of any intermediate logical addresses or a virtual address space for the memory. Directory information of where the files are stored in the memory is maintained within the memory system by its controller, rather than by the host. The file based interface between the host and memory systems allows the memory system controller to utilize the data storage blocks within the memory with increased efficiency.
Abstract:
A re-programmable non-volatile memory system, such as a flash EEPROM system, having its memory cells grouped into blocks of cells that are simultaneously erasable is operated in a manner to level out the wear of the individual blocks through repetitive erasing and re-programming. This may be accomplished without use of counts of the number of times the individual blocks experience erase and re-programming but such counts can optionally aid in carrying out the wear leveling process. Individual active physical blocks are chosen to be exchanged with those of an erased block pool in a predefined order.
Abstract:
Data in data runs are stored in a non-volatile memory array in adaptive metablocks that are configured according to the locations of data boundaries. A serial flash buffer is used to store some data, while other data are directly stored in non-volatile memory. Data may be stored with alignment to data boundaries during updating of the data to improve efficiency of subsequent updates.