Abstract:
Power is produced from high presser geothermal fluid by separating the fluid into high pressure steam and high pressure brine, expanding the high pressure steam in a high pressure turbogenerator for producing power and heat depleted steam, and separating liquid from the heat depleted steam thereby producing dried heat depleted steam at a pressure and temperature lower than the pressure and temperature of the high pressure steam. The liquid so separated, and the high pressure brine are combined in a flash chamber which produces steam which is combined with the dried heat depleted steam and expanded in a lower pressure turbogenerator for producing additional power. Optionally, some of the high pressure steam is used to reheat the dried heat depleted steam and the steam produced by the flash chamber before such steam is expanded in the lower pressure turbogenerator.
Abstract:
A method for using a two-phase fluid includes separating the fluid into its two phases, one of which is a hot gas containing energy in the form of latent heat, and one of which is a hot liquid containing energy in the form of sensible heat; converting sensible heat in the liquid to sensible heat in a working fluid for producing preheated working fluid; and transferring latent heat in the gas to the preheated working fluid for vaporizing the same at substantially constant temperature and pressure.
Abstract:
A plurality of independent, closed Rankine cycle power plants, each of which has a vaporizer, is operated by serially applying a medium or low temperature source fluid to the vaporizers of the power plants for producing heat depleted source fluid. A preheater is provided for each vaporizer; and said heat depleted source fluid is applied to all of the preheaters in parallel. The heat depleted source fluid thus serves to heat the operating fluid to the evaporization temperature, while the source fluid applied to the vaporizers supplies the latent heat of vaporization to the operating fluid of the power plant. The present invention is advantageous, as compared to a conventional cascaded power plant of the type described, because the temperature drop of the source fluid can be increased without reducing the efficiency. Alternatively, the temperature drop can be maintained but the efficiency can be increased. In either case, the power produced by the power plant according to the present invention is increased.
Abstract:
Power is generated from a two-phase geothermal fluid containing a substantial amount of non-condensable gases, typically not less than about 3% by extracting a geothermal fluid from the ground under its own pressure, and passing the extracted geothermal fluid through an indirect heat exchange device containing an organic fluid for vaporizing the latter and producing vaporized organic fluid and heat depleted geothermal fluid. The vaporized organic fluid is expanded in a turbine coupled to a generator for producing power and expanded vaporized organic fluid which is condensed to a liquid and returned to the indirect heat exchange device. Finally, the heat depleted geothermal fluid may be returned to the ground via a rejection well.
Abstract:
A plurality of independent, closed Rankine cycle power plants, each of which has a vaporizer, is operated by serially applying a medium or low temperature source fluid to the vaporizers of the power plants for producing heat depleted source fluid. A preheater is provided for each vaporizer; and said heat depleted source fluid is applied to all of the preheaters in parallel. The heat depleted source fluid thus serves to heat the operating fluid to the evaporization temperature, while the source fluid applied to the vaporizers supplies the latent heat of vaporization to the operating fluid of the power plant. The present invention is advantageous, as compared to a conventional cascaded power plant of the type described, because the temperature drop of the source fluid can be increased without reducing the efficiency. Alternatively, the temperature drop can be maintained but the efficiency can be increased. In either case, the power produced by the power plant according to the present invention is increased.
Abstract:
A method for using a two-phase fluid includes separating the fluid into its two phases, one of which is a hot gas containing energy in the form of latent heat, and one of which is a hot liquid containing energy in the form of sensible heat; converting sensible heat in the liquid to sensible heat in a working fluid for producing preheated working fluid; and transferring latent heat in the gas to the preheated working fluid for vaporizing the same at substantially constant temperature and pressure.